Фср линейного однородного дифференциального уравнения

Фср линейного однородного дифференциального уравнения

ФУНДАМЕНТАЛЬНАЯ СИСТЕМА РЕШЕНИЙ ОДНОРОДНОГО ЛИНЕЙНОГО ОДУ

Высшая математика

Рассмотрим линейное однородное дифференциальное уравнение

Фундаментальной системой решений однородного линейного дифференциального уравнения называется упорядоченный набор из n линейно независимых решений уравнения.

Доказано, что у однородного линейного дифференциального уравнения с непрерывными коэффициентами существует фундаментальная система решений.

И пусть функции y 1 ( x ), y 2( x ). y n( x ) — решения линейного однородного уравнения с начальными условиями:

Фундаментальная система решений

Содержание:

Одним из важнейших понятий в теории однородных систем линейных ОДУ является понятие фундаментальной системы решений.

Определение 5.2. Линейно независимую в промежутке систему из вектор-функций вида (5.7), каждая из которых является в нем решением однородной системы п линейных ОДУ (5.3), называют фундаментальной системой решений для (5.3) в этом промежутке.

Теорема 5.7. Фундаментальные системы решений существуют.

Пусть чисел

образуют единичную матрицу размера n, определитель которой Рассмотрим n решений однородной системы (5.3), которые определены в некотором промежутке числовой прямой точке удовлетворяют начальным условиям Тогда получим в промежутке Т.

На основании теоремы 5.5 и определения 5.1 отсюда следует, что эти решения линейно независимы в промежутке Т и, согласно определению 5.2, образуют в нем фундаментальную систему решений для (5.3).

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Запись в виде (5.3) соответствует нормальной однородной системе линейных ОДУ с переменными коэффициентами, поскольку элементы матрицы A(t) этой системы являются функциями независимого переменного t.

  • Такие системы удается проинтегрировать и получить решение в виде аналитической зависимости лишь в исключительных случаях. Однако существует одна замечательная формула, связывающая между собой решения произвольной однородной системы (5.3) ОДУ с переменными коэффициентами.

Вычислим производную по t от определителя Вронского (5.6), составленного из решений системы ОДУ (5.3):

В (5.8) использовано правило вычисления производной от определителя квадратной матрицы размера п [II]. Так как определитель представляет собой сумму слагаемых с соответствующими знаками, а каждое слагаемое есть произведение п элементов, то, используя правило дифференцирования произведения п функций [II], приходим к записи (5.8). Вектор-функция является решением однородной системы (5.3), т.е. Поэтому первый определитель в правой части (5.8) имеет вид

Здесь использовано правило сложения определителей, а также то, что определитель, имеющий две одинаковые строки, равен нулю.

Возможно вам будут полезны данные страницы:

Аналогично второе, третье и т.д. (вплоть до последнего) слагаемые в (5.8) равны: С учетом этих выражений (5.8) принимает вид Отсюда следует, что определитель Вронского удовлетворяет линейному однородному ОДУ первого порядка с разделяющимися переменными. Разделяя переменные и интегрируя, получаем соотношение которое называют формулой Остроградского — Лиувил-ля (Ж. Лиувилль (1809-1882) — французский математик и механик, а о русском математике и механике М.В. Остроградском (1801-1861) см. Краткий исторический очерк.

Пример с решением №1

Рассмотрим нормальную систему ОДУ где — произвольная функция, непрерывная в некотором промежутке .

Решение:

Матрица этой системы Отсюда следует, что и формула Остроградского — Лиувилля принимает вид где

Итак, для двух произвольных решений рассматриваемой системы справедливо (5.11). Отметим, что (5.11) можно использовать для контроля точности получаемых решений системы

ОДУ при ее численном интегрировании

ОПРЕДЕЛЕНИЕ. Система m линейных уравнений с п переменными называется однородной, если во всех ее уравнениях свободные члены равны нулю.

В общем случае однородная система (или система однородных уравнений) имеет вид:

Система линейных однородных уравнений всегда совместна, так как она всегда имеет, по крайней мере, нулевое (тривиальное) решение (0; 0; 0). Действительно, набор значений неизвестных

удовлетворяет всем уравнениям системы.

ОПРЕДЕЛЕНИЕ. По отношению к системе (1.25) система (1.34) называется приведенной.

Если в системе (1.34) то она имеет только одно нулевое решение (см. теорему 1.7).

ТЕОРЕМА 1.11. Система линейных однородных уравнений имеет ненулевое решение тогда и только тогда, когда ранг этой системы меньше числа ее неизвестных, т.е. при

Следствие 1. Если число уравнений однородной системы меньше числа ее неизвестных, то эта система имеет ненулевое решение. Следствие 2. Если в однородной системе число уравнений равно числу неизвестных, то она имеет ненулевое решение тогда и только тогда, когда определитель матрицы системы равен нулю.

Обозначим решение системы (1.34) в виде строки

Решения системы линейных однородных уравнений обладают следующими свойствами:

1. Если строка — решение системы (1.34), то и строка — также решение этой системы.

2. Если строки — решения системы (1.34), то при любых с> и с2 их линейная комбинация — также решение данной системы.

Убедиться в справедливости указанных свойств решений системы линейных однородных уравнений можно непосредственной подстановкой их в уравнения системы.

Из сформулированных свойств следует, что всякая линейная комбинация решений системы линейных однородных уравнений также является решением этой системы. Поэтому целесообразно найти такие линейно независимые решения системы (1.34), через которые линейно выражались бы все остальные ее решения.

ОПРЕДЕЛЕНИЕ. Система линейно независимых решений называется фундаментальной, если каждое решение системы (1.34) является линейной комбинацией решений

ТЕОРЕМА 1.12. Если ранг г матрицы однородной системы линейных уравнений (1.34) меньше числа неизвестных n, то всякая ее фундаментальная система решений состоит из решений (или матрица фундаментальной системы имеет столбцов).

Поэтому общее решение системы (1.34) линейных однородных уравнений имеет вид:

(1.35)

где —любая фундаментальная система решений; — произвольные числа и Замечание. Общее решение системы линейных уравнений с п неизвестными (1.25) равно сумме общего решения соответствующей ей приведенной системы линейных уравнений (1.34) и произвольного частного решения этой системы (1.25).

Для нахождения фундаментальной системы решений предположим, что ранг Тогда базисные неизвестные этой системы линейно выражаются через свободные переменные Положим значения свободных переменных Затем находим второе решение, принимая Иными словами, мы последовательно присваиваем каждой свободной переменной единичное значение, положив остальные нулями.

Пример с решением №2

Найти решение и фундаментальную систему решения системы линейных однородных уравнений: Решение:

Составим матрицу системы, и прямым ходом метода Гаусса приведем ее к ступенчатому виду:

Выпишем систему уравнений: Обратный ход метода Гаусса дает значения базисных неизвестных выраженные через свободную переменную . Обозначим ее

Из последнего уравнения находим Затем, поднимаясь вверх по системе, определяем все неизвестные

Эти последние выражения представляют запись общего решения нашей однородной системы. Если теперь давать переменной с числовые значения, можно получить фундаментальное решение системы.

Поскольку ранг однородной системы равен четырем, то фундаментальная система решений для нее состоит из решения.

Положив значение свободной переменной (других свободных переменных у нас нет), получим фундаментальное решение системы:

Заметим, что если и решением будет нулевой вектор о; его называют тривиальным решением; этот вектор всегда есть среди решений однородной системы.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://natalibrilenova.ru/fundamentalnaya-sistema-reshenij/