Фундаментальное решение уравнения теплопроводности вывод

Фундаментальное решение уравнения теплопроводности; его физический смысл

Нестационарное урав­нение теплопроводности в неподвижной среде в декартовой системе координат имеет вид:

. (1)

Рассмотрим безграничное пространство, заполненное однородной не­по­движ­ной сре­дой с плотностью r, теплоемкостью c и коэффициентом тем­пе­ра­ту­ро­про­вод­ности a. Пусть в этом пространстве в точ­ке с координатами x’, y’, z’ в момент времени t’ сработал (включился и сразу же выключился) мгновенный источник тепла, выделивший количество те­п­ла, равное Q. Тогда температура в любой точке с координатами x, y, z в любой момент времени t > t’ может быть определена по формуле

. (2)

Функция (2) ввиду ее чрезвычайной важности для приложений называется фун­да­мен­таль­ным ре­ше­нием уравнения теплопроводности. В том, что эта фун­к­ция является ре­ше­ни­ем уравнения теплопроводности (1), проще всего убе­дить­ся непосредственной проверкой. Про­диф­фе­рен­ци­руем фундаментальное ре­шение один раз по t и дважды по x, y, z:

,

, ,

.

Подставляя эти формулы в уравнение (1), убеждаемся, что при t > t’ получается тождество.

На первый взгляд может показаться, что практическая польза от фун­да­мен­таль­ного ре­ше­ния невелика, т.к. мгновенных то­чечных источников в при­ро­де и в тех­нике не существует; лю­бой реальный ис­точ­ник имеет конечные раз­ме­ры и дей­ст­ву­ет в течение конечного про­ме­жут­ка вре­ме­ни. Однако всегда мож­но мысленно раз­бить источник теп­ла на отдельные эле­мен­ты, на­столь­ко малые, чтобы их можно бы­ло счи­тать точечными, и, используя прин­цип су­пер­по­зиции, сложить температуры, создаваемые эти­ми эле­ментами (другими словами, про­ин­те­гри­ровать фундаментальное ре­ше­ние по координатам x’, y’, z’ в пре­де­лах ре­альных размеров ис­точника). Аналогично, отрезок времени, в течение ко­то­ро­го дейст­во­вал источник, можно раз­бить на множество бесконечно малых ин­тер­валов dt’ и проинтегрировать фундаментальное ре­шение по t’ от момента вклю­чения до момента выключения источника. При этом можно учесть, что раз­личные элементы источника могут иметь различную мощность, которая к то­му же может меняться со временем, т.е. решить множество практически важ­ных задач. Если ис­точ­ники тепла имеют сложную форму, и (или) их мощность ме­няется сложным образом, так что получить аналитическое решение не уда­ет­ся, можно применить методы численного ин­тег­ри­рования. Простейшие при­ме­ры применения этих идей приведены ниже. Кроме то­го, в некоторых случаях, ко­гда мощный источник тепла действовал непродолжительное вре­мя, на рас­сто­яниях, много больших, чем размеры источника, можно непосредственно ис­поль­зо­вать формулу (2). В качестве примера можно назвать подземный взрыв (обычный или ядерный небольшой мощности), про­из­ве­ден­ный на боль­шой глубине.

Рассмотрим некоторые свойства фундаментального решения. Если начало координат поместить в точку (x’, y’, z’) а отсчет времени начать с момента t’, то вид формулы (2) значительно упрощается:

, (3)

где r 2 = x 2 + y 2 + z 2 — квадрат расстояния от источника (от начала координат) до точки на­блю­де­ния. Если зафиксировать ряд моментов времени 0 2 /(6a). В этот момент тем­пе­ратура в точке, находящейся на расстоянии r от мгновенного точечного источника достигает мак­симума.

Лекция 4. Вывод уравнения теплопроводности

При построении математической модели распространения тепла в стержне сделаем следующие предположения:
1) стержень сделан из однородного проводящего материала с плотностью ρ;
2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль оси ОХ;
3) стержень тонкий — это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.

Рассмотрим часть стержня на отрезке [х, х + ∆х] (см. рис. 6) и воспользуемся законом сохранения количества тепла:

Общее количество тепла на отрезке [х, х + ∆х] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.

Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U, вычисляется по формуле: ∆Q= CρS∆x∆U, где С — удельная теплоемкость материала ( = количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S — площадь поперечного сечения.

Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q1 = -kSUx(x, t)∆t, где k — коэффициент теплопроводности материала ( = количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х, а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть Ux CpS∆x∆U = kSUx(x + ∆х, t) ∆t — kSUx(x, t)∆t.

Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:

Отсюда уравнение теплопроводности имеет вид

Ut = a 2 Uxx,
где — коэффициент температуропроводности.

В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t), получится неоднородное уравнение теплопроводности

Начальные условия и граничные условия.

Для уравнения теплопроводности задается только одно начальное условие U|t=0 = φ(х) (или в другой записи U(x,0) = φ(х)) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х). Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.

Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g1(t) ≡ Т1 и g2(t) ≡ Т2, где Т1 и Т2 — постоянные. Если концы поддерживаются все время при нулевой температуре, то Т1= Т2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g1(t) = g2(t) = 0, то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условия третьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:

Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h1 > 0 — коэффициент теплообмена с окружающей средой, g1(t) — температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:

Аналогично получается условие (14) на правом конце стержня, только постоянная λ2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.

Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h1, очень большой.

Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:

Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.

Решение первой начально-краевой задачи для уравнения теплопроводности.

Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:

Найти решение уравнения

удолетворяющее граничным условиям

и начальному условию

Решим эту задачу методом Фурье.

Шаг 1. Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t).

Найдем частные производные:

Подставим эти производные в уравнение и разделим переменные:

По основной лемме получим

Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:

Шаг 2. Решим задачу Штурма-Лиувилля

Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.

Собственные значения равны

Собственные функции равны (См. решение задачи)

Шаг 3. Подставим собственные значения в уравнение а) и решим его:

Шаг 4. Выпишем частные решения уравнения (15):

В силу линейности и однородности уравнения (15) их линейная комбинация

Шаг 5. Определим коэффициенты An в (19), используя начальное условие (17):

Приходим к тому, что начальная функция φ(x) разлагается в ряд Фурье по собственным функциям задачи Штурма-Лиувилля. По теореме Стеклова такое разложение возможно для функций, удовлетворяющих граничным условиям и имеющих непрерывные производные второго порядка. Коэффициенты Фурье находятся по формулам

Вычислив эти коэффициенты для конкретной начальной функции φ(x) и подставив их значения в формулу (19), мы тем самым получим решение задачи (15), (16), (17).

Замечание. Используя формулу (19), можно также, как в лекции 3, получить решение первой начально-краевой задачи для уравнения Ut = a 2 Uxx. Оно будет иметь вид

где


источники:

http://vicaref.narod.ru/PDE/index4.htm