Фундаментальное уравнение описывающее электромагнитное поле

Please wait.

We are checking your browser. gufo.me

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e30135ea87013ba • Your IP : 85.95.188.35 • Performance & security by Cloudflare

МА́КСВЕЛЛА УРАВНЕ́НИЯ

  • В книжной версии

    Том 18. Москва, 2011, стр. 574-576

    Скопировать библиографическую ссылку:

    МА́КСВЕЛЛА УРАВНЕ́НИЯ, ос­но­во­по­ла­гаю­щие урав­не­ния клас­сич. мак­ро­ско­пич. элек­тро­ди­на­ми­ки, опи­сы­ваю­щие за­ко­но­мер­но­сти элек­тро­маг­нит­ных яв­ле­ний в сплош­ной сре­де или ва­куу­ме (в пре­неб­ре­же­нии кван­то­вы­ми яв­ле­ния­ми). Тео­рия элек­тро­маг­нит­но­го поля бы­ла раз­ра­бо­та­на Дж. К. Мак­свел­лом в 1856–73. В М. у. обоб­ще­ны ра­нее ус­та­нов­лен­ные опыт­ные за­ко­ны элек­трич. и маг­нит­ных яв­ле­ний, и эти за­ко­ны объ­е­ди­не­ны с кон­цеп­ци­ей М. Фа­ра­дея об элек­тро­маг­нит­ном по­ле, обес­пе­чи­ваю­щем взаи­мо­дей­ст­вие ме­ж­ду уда­лён­ны­ми за­ря­жен­ны­ми те­ла­ми (т. н. тео­рия близ­ко­дей­ст­вия). В ори­ги­наль­ном из­ло­же­нии Мак­свел­ла бы­ло соз­на­тель­но при­ве­де­но из­бы­точ­ное чис­ло урав­не­ний; при этом Мак­свелл ис­поль­зо­вал ма­те­ма­тич. ап­па­рат ква­тер­нио­нов Га­миль­то­на. Совр. фор­му М. у. с ис­поль­зо­ва­ни­ем век­тор­но­го ис­чис­ле­ния при­да­ли Г. Р. Герц и О. Хе­ви­сайд . М. у. свя­зы­ва­ют век­тор­ные по­ле­вые ве­ли­чи­ны (яв­ляю­щие­ся функ­ция­ми ко­ор­ди­нат и вре­ме­ни) с ис­точ­ни­ка­ми элек­тро­маг­нит­но­го по­ля – рас­пре­де­лён­ны­ми в про­стран­ст­ве и из­ме­няю­щи­ми­ся во вре­ме­ни элек­трич. за­ря­да­ми и то­ка­ми. М. у. име­ют вид (диф­фе­рен­ци­аль­ная фор­ма М. у. в СИ): $$\textrm\,\boldsymbol E=-\frac<\partial \boldsymbol B><\partial t>,\quad \textrm\,\boldsymbol H=\boldsymbol j+\frac<\partial \boldsymbol D><\partial t>,\\ \textrm

    \,\boldsymbol D=ρ,\quad \textrm
    \,\boldsymbol B=0,$$ где $\boldsymbol E$ – на­пря­жён­ность элек­трич. по­ля, $\boldsymbol B$ – маг­нит­ная ин­дук­ция, $\boldsymbol H$ – на­пря­жён­ность маг­нит­но­го по­ля, $\boldsymbol D$ – элек­трич. ин­дук­ция, $\boldsymbol j$ – плот­ность элек­трич. то­ка, $ρ$ – объ­ём­ная плот­ность элек­трич. за­ря­да. Дей­ст­вие диф­фе­рен­ци­аль­ных опе­ра­то­ров $\textrm$ и $\textrm
    $ на век­то­ры элек­тро­маг­нит­но­го по­ля мо­жет быть вы­ра­же­но че­рез век­тор­ное и ска­ляр­ное про­из­ве­де­ния опе­ра­то­ра Га­миль­то­на $\nabla$ (на­бла) и со­от­вет­ст­вую­ще­го по­ле­во­го век­то­ра; в де­кар­то­вой сис­те­ме ко­ор­ди­нат $$\nabla=\boldsymbol e_x\frac<\partial><\partial x>+\boldsymbol e_y\frac<\partial><\partial y>+\boldsymbol e_z\frac<\partial><\partial z>$$ (где $\boldsymbol e_x, \boldsymbol e_y, \boldsymbol e_z$ – еди­нич­ные век­то­ры соот­вет­ст­вую­щих ко­ор­ди­нат­ных осей), и для про­из­воль­ной век­тор­ной функ­ции $\boldsymbol f=\boldsymbol e_xf_x+\boldsymbol e_yf_y+\boldsymbol e_zf_z$ по­лу­ча­ем: $$\textrm\,\boldsymbol f=[\nabla \boldsymbol f]=\boldsymbol e_x \left( \frac<\partial f_z><\partial y>-\frac<\partial f_y> <\partial z>\right) + \boldsymbol e_y \left( \frac<\partial f_x><\partial z>-\frac<\partial f_z> <\partial x>\right) + \boldsymbol e_z \left( \frac<\partial f_y><\partial x>-\frac<\partial f_x> <\partial y>\right),\\ \textrm
    \,\boldsymbol f=\nabla \boldsymbol f=\frac<\partial f_x> <\partial x>+ \frac<\partial f_y> <\partial y>+ \frac<\partial f_z><\partial z>.$$

    Уравнения Максвелла для электромагнитного поля — основные законы электродинамики

    Система уравнений Максвелла обязана своим названием и появлением Джеймсу Клерку Максвеллу, сформулировавшему и записавшему данные уравнения в конце 19 века.

    Максвелл Джемс Кларк (1831 — 1879) был известным британским физиком и математиком, профессором Кембриджского университета в Англии.

    Он практически объединил в своих уравнениях все накопленные к тому времени экспериментально полученные результаты касательно электричества и магнетизма и придал законам электромагнетизма четкую математическую форму. Основные законы электродинамики (уравнения Максвелла) были сформулированы в 1873 году.

    Максвелл развил учение Фарадея об электромагнитном поле в стройную математическую теорию, из которой вытекала возможность волнового распространения электромагнитных процессов. При этом оказалось, что скорость распространения электромагнитных процессов равна скорости света (величина которой была уже известна из опытов).

    Это совпадение послужило для Максвелла основанием к тому, чтобы высказать идею об общей природе электромагнитных и световых явлений, т.е. об электромагнитной природе света.

    Созданная Джеймсом Максвеллом теория электромагнитных явлений нашла первое подтверждение в опытах Герца, впервые получившего электромагнитные волны.

    В итоге эти уравнения сыграли главную роль в формировании точных представлений классической электродинамики. Уравнения Максвелла могут быть записаны в дифференциальной или интегральной форме. Практически они описывают сухим языком математики электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и в сплошных средах. К данным уравнениям можно добавить выражение для силы Лоренца, в этом случае мы получим полную систему уравнений классической электродинамики.

    Чтобы понимать некоторые математические символы, использующиеся в дифференциальных формах уравнений Максвелла, для начала определим такую занятную вещь, как оператор набла.

    Оператор набла (или оператор Гамильтона) — это векторный дифференциальный оператор, компоненты которого являются частными производными по координатам. Для нашего реального пространства, которое является трехмерным, адекватна прямоугольная система координат, для которой оператор набла определяется следующим образом:

    где i, j и k – единичные координатные векторы

    Оператор набла, будучи применен к полю тем или иным математическим образом, дает три возможные комбинации. Данные комбинации именуются:

    Градиент — вектор, своим направлением указывающий направление наибольшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный скорости роста этой величины в этом направлении.

    Дивергенция (расхождение) — дифференциальный оператор, отображающий векторное поле на скалярное (то есть, в результате применения к векторному полю операции дифференцирования получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.

    Ротор (вихрь, ротация) — векторный дифференциальный оператор над векторным полем.

    Теперь рассмотрим непосредственно уравнения Максвелла в интегральной (слева) и дифференциальной (справа) формах, содержащие в себе основные законы электрического и магнитного полей, включая электромагнитную индукцию.

    Интегральная форма: циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

    Дифференциальная форма: при всяком изменении магнитного поля возникает вихревое электрическое поле, пропорциональное скорости изменения индукции магнитного поля.

    Физический смысл: всякое изменение магнитного поля во времени вызывает появление вихревого электрического поля.

    Интегральная форма: поток индукции магнитного поля через произвольную замкнутую поверхность равен нулю. Это означает, что в природе нет магнитных зарядов.

    Дифференциальная форма: поток силовых линий индукции магнитного поля из бесконечного элементарного объёма равен нулю, так как поле вихревое.

    Физический смысл: источники магнитного поля в виде магнитных зарядов в природе отсутствуют.

    Интегральная форма: циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру прямо пропорциональна суммарному току, пересекающему поверхность, охватываемую этим контуром.

    Дифференциальная форма: вокруг любого проводника с током и вокруг любого переменного электрического поля существует вихревое магнитное поле.

    Физический смысл: протекание тока проводимости по проводникам и изменения электрического поля во времени приводят к появлению вихревого магнитного поля.

    Интегральная форма: поток вектора электростатической индукции через произвольную замкнутую поверхность, охватывающую заряды, прямо пропорционален суммарному заряду, расположенному внутри этой поверхности.

    Дифференциальная форма: поток вектора индукции электростатического поля из бесконечного элементарного объема прямо пропорционален суммарному заряду, находящемуся в этом объёме.

    Физический смысл: источником электрического поля является электрический заряд.

    Система данных уравнений может быть дополнена системой так называемых материальных уравнений, которые характеризуют свойства заполняющей пространство материальной среды:


    источники:

    http://bigenc.ru/physics/text/2167197

    http://electricalschool.info/spravochnik/electroteh/2145-uravneniya-maksvella.html