Функциональное уравнение как решать онлайн

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Как решить уравнение функции по математике

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Множество уравнений и заданий, вычисляемых с помощью чисто алгебраических операций, можно решить намного быстрее, используя графики функций. Данное название получилось благодаря тому, что график линейного уравнения — это прямая линия. Линейные уравнения достаточно легко решать алгебраическим путем — все неизвестные переносим в одну сторону уравнения, все, что нам известно — в другую. Сделаем это с помощью графического способа.

Допустим, дано уравнение следующего вида:

Для его решения выполним перенос членов уравнения:

Раньше мы, выполнив простые арифметические операции, получили бы ответ, но поскольку мы решаем данный пример с помощью графического метода, то нам необходимо построить левую и правую части как две различные функции в одной системе координат. Сделаем это:

Корнем нашего уравнения является точка пересечения графиков:

Где можно решить уравнение функции онлайн?

Решить функцию уравнения вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Функциональные уравнения: Часть 1

Эта трилогия статьей будет посвящена функциональным уравнениям. В данной статье попытаемся понять что такое функциональное уравнение и с чем его едят. В следующих статьях рассмотрим конкретные методы решения более сложных функциональных уравнений(метод подстановок, и подобное).

Функциональное уравнение — уравнение, связующее значение функции в одной точке с её значениями в других точках.

Другими словами, в функциональных уравнениях место неизвестного занимает функция. Для примера, рассмотрим такое функциональное уравнение:
$$display$$2f(x)=2$$display$$ Тут интуитивно хочется разделить обе части уравнения на 2, что сработает и мы узнаем ответ: $$display$$2f(x)=2 \Rightarrow f(x)=1$$display$$ Значит ответом на функциональное уравнение может быть только значение f(x), или похожее (это обычно указывают в условии задачи).
Рассмотрим некое функциональное уравнение, где с обоих сторон будут стоят функции. $$display$$4f(x)=2f(x)+2x \Rightarrow 2f(x)=f(x)+x \Rightarrow f(x)=x$$display$$ Стоит отметить что функция всегда имеет под собой число ($inline$f(x)=x+2, f(1)=3, f(5)=7$inline$, а значит можно производить над ними арифметические операции. Давайте рассмотрим функциональное уравнение из двумя переменными. Задание : найти все функции $inline$f: \mathbb \rightarrow \mathbb$inline$ для каких $inline$4f(x+y)=f(x)+f(y)+2$inline$. В случаях из двумя переменными необходимо припустить что $inline$x=y=0$inline$, из этого мы узнаем значение $inline$f(0)$inline$.

$inline$x=y=0$inline$
$inline$4f(0)=2f(0)+2$inline$
$inline$2f(0)=2 \Rightarrow f(0)=1$inline$

Узнав значение $inline$f(0)$inline$, приравниваем $inline$y$inline$ к нулю. Таким образом узнаем значение $inline$f(x)$inline$

$inline$y=0$inline$
$inline$4f(x)=f(x)+f(0)+2$inline$
$inline$3f(x) = 3 \Rightarrow f($inline$f(x)=kx$inline$x)=1 $inline$
Ответ: $inline$ f(x)=1 $inline$

При такого вида уравнениях обязательно необходимо предполагать что $inline$x=y=0$inline$, но не всегда $inline$x=0\vee y=0$inline$. Существуют такие аналоги как: $inline$x=y, x=f(y), . $inline$. К примеру, $inline$4f(x-y)=f(x)+f(y)+2$inline$. Подставляем $inline$x=y=0$inline$, получаем $inline$4f(0)=2f(0)+2 \Rightarrow f(0)=1$inline$, тогда $inline$x=y$inline$ значит $inline$4f(0)=2f(x)+2$inline$, разделим обе части уравнения на 2 получим что $inline$2f(0)=f(x)+1 \Rightarrow f(x)=1+2f(0) \Rightarrow f(x)=3$inline$, произведем проверку, которая показывает что $inline$f(x)=3$inline$ есть решением данного функционального уравнения.
Теорема 1. Функциональное уравнение Коши $inline$f(x+y)=f(x)+f(y)$inline$ удовлетворяют все линейные функции вида $inline$f(x)=kx$inline$ (1)
Теорема 2. Функциональное уравнение $inline$f(x+y)=f(x)f(y)$inline$ удовлетворяют все показательные функции вида $inline$f(x)=k^$inline$ (2)
Теорема 3. Функциональное уравнение $inline$f(xy)=f(x)+f(y)$inline$ удовлетворяют все логарифмические функции вида $inline$f(x)=log_k (x)$inline$ (3)
Теорема 4. Функциональное уравнение $inline$f(xy)=f(x)f(y)$inline$ удовлетворяют все степенные функции вида $inline$f(x)=x^$inline$ (4)
Доведем их.
$$display$$(1) f(x+y)=a(x+y), f(x)+f(y) = ax+ay \Rightarrow f(x+y)=f(x)+f(y)$$display$$
$$display$$(2) f(x+y)=a^, f(x)f(y) = a^a^ \Rightarrow f(x+y)=f(x)f(y)$$display$$
$$display$$(3) f(xy)=log_a (xy), f(x)+f(y)=log_a(x)+log_a(y) \Rightarrow f(xy)=f(x)+f(y)$$display$$
$$display$$(4) f(xy)=(xy)^, f(x)f(y) = x^y^ \Rightarrow f(xy)=f(x)f(y)$$display$$
Теорема 5. Уравнения Йенсена $inline$f(\frac<2>)=\frac<2>, f(x)=kx+b$inline$, доводиться аналогично предыдущим.

Рассмотрим такую задачу: Найдите все линейные функции вида $inline$f(x)=ax, $inline$$inline$f: \mathbb \rightarrow \mathbb$inline$ для которых правильно $inline$4(f(x-y)+f(x+y)+1)=2f(x)+f(y-1)$inline$.

Воспользуемся теоремой 1.
$inline$4(f(x-y)+f(x+y)+1) = 4(f(x)-f(y)+f(x)-f(y)+1) = 4$inline$
$inline$4=2f(x)+f(y-1)$inline$
Тут ключевой момент. Нельзя подставлять $inline$x=y=0$inline$, так как ничего не получиться. Необходимо подставить $inline$x=0, y=x+1$inline$, тогда мы сможем узнать $inline$f(0)$inline$.
$$display$$4=2f(0)+f(0) \Rightarrow 4=3f(0) \Rightarrow f(0)=\frac<4><3>$$display$$. Тогда подставляем $inline$x=y-1$inline$, и получаем $inline$4=2f(x)+f(x) \Rightarrow 4=3f(x) \Rightarrow f(x)=\frac<4><3>$inline$
Ответ: $inline$f(x)=\frac<4><3>$inline$


источники:

http://www.pocketteacher.ru/solve-functional-equation-ru

http://habr.com/ru/sandbox/121719/