Функция грина задачи дирихле для уравнения лапласа

Лекция 10. Метод функций Грина решения задачи Дирихле

Метод функций Грина решения задачи Дирихле основывается на формулах Грина. На плоскости эта формула имеет следующий вид: если функции U = U(x,y) и V = V(x,y) имеют непрерывные частные производные второго порядка в ограниченной области D и непрерывны в замкнутой области , то

где и — производные по направлению внешней нормали к D, а кривая Г — положительно ориентирована (то есть направление интегрирования таково, что область D при интегрировании остается слева). Из этой формулы легко выводится обобщенная формула Грина

где С — замкнутая кривая, лежащая внутри кривой Г,а D — область, заключенная между Г и С (см. рис. 20). Кривая С также положительно ориентирована, а n1 — направление внешней нормали к D.

Аналогичная формула имеется и в случае пространства, однако мы ее не приводим, поскольку в дальнейшем метод функций Грина подробно излагается только для плоских областей. Для искомой гармонической функции U , удовлетворяющей условию Дирихле , и функции V = G(P, Po) — функции Грина — формула (43) будет иметь вид:

где С — окружность радиуса ε с центром в точке Po (см. рис.20). Остальные слагаемые в данном случае будут равны нулю, так как и в D. Вычислим интеграл Для этого введем полярные координаты (r, φ) с полюсом в точке Po. Тогда на окружности C расстояние r = ε и dl = εdφ. Поэтому

Из определения функции Грина вытекает, что где g(P, Po) — гармоническая функция всюду в области D. Это означает, что g(P, Po) и ее производная по нормали n1 ограничены в D, следовательно

Кроме того, функция U и ее производная — также ограничены в D. Поэтому

где α(ε) и β(ε) — ограниченные величины при

Переходя к пределу при , получим

Таким образом, из формулы (44) с учетом граничного условия вытекает

Эта формула дает решение задачи Дирихле для ограниченной области на плоскости, если известна функция Грина G.

В пространстве доказывается аналогичная формула, дающая интегральное представление решения задачи Дирихле, если известна соответствующая функция Грина. Она имеет вид

где Г — положительно ориентированная поверхность, ограничивающая область D в пространстве, и ,f(s) — граничные значения гармонической функции.

Замечание. Метод функций Грина позволяет получать решения многих задач в областях различной формы. Однако для каждой области (а точнее, для каждого оператора, стоящего в левой части граничного условия) и для каждого уравнения нужно находить свою функцию Грина, что является часто непростой задачей. В том случае, когда функция Грина известна, например, для круга, шара или других простых областей (см. лекцию 9), решение соответствующей задачи выводится несложными вычислениями.

С помощью формулы (45) легко получается интегральная формула Пуассона для круга. Для этого нужно вычислить производную функции Грина для круга. Рассмотрим сначала круг радиуса R с центром в начале координат (см. рис.17). Функция G(P, Po) для этого круга имеет вид (формула 42):

Так как направление внешней нормали к Г совпадает с направлением полярного радиуса ρ , то

На границе Г расстояние поэтому

Подставим полученное выражение для производной в формулу (45):

Так как точка может быть произвольной внутри круга, обозначим ее координаты через — полярная система координат с полюсом в точке О. Тогда окончательно формула (46) примет вид:

Из формулы (47) нетрудно получить интегральную формулу Пуассона для произвольного круга радиуса R с центром о , уо). Для этого преобразуем данный круг с помощью замены переменных в круг того же радиуса, но с центром в начале координат, запишем для него формулу (47), а затем вернемся к прежним переменным. В результате будем иметь формулу

Функция называется ядром Пуассона для круга. Отметим некоторые свойства ядра Пуассона.
1. Ядро Пуассона положительно при ρ

Свойство 1 очевидно, так как . На луче α = φ ядро Пуассона имеет вид

Свойства 2 и З проверяются непосредственно с помощью вычислений. Однако свойство 3 можно доказать и более красивым способом. А именно, если рассмотреть задачу Дирихле в круге радиуса R с граничным условием , то решение такой задачи определяется формулой Пуассона (47):

С другой стороны, функция также является решением задачи Дирихле в круге с тем же граничным условием. В силу единственности решения задачи Дирихле получаем равенство (48).

О новом подходе в методе функций Грина при решении краевых задач Дирихле и Неймана для уравнения Лапласа Текст научной статьи по специальности « Математика»

Аннотация научной статьи по математике, автор научной работы — Карташов Эдуард Михайлович

Описан новый подход в методе функций Грина при решении краевых задач Дирихле и Неймана для уравнения Лапласа на плоскости . В основе метода лежит построение «усеченной» функции Грина , что является достаточным для записи аналитического решения задачи.

Похожие темы научных работ по математике , автор научной работы — Карташов Эдуард Михайлович

A new approach in method of green’s functions to the solution of dirichlet and newmann boundary value problems for the laplace equation

A new approach to the application of method of Green»s functions in the Solution of D/r/chlet and Newmann Boundaгу Value Problems for the 2D Laplace equation.

Текст научной работы на тему «О новом подходе в методе функций Грина при решении краевых задач Дирихле и Неймана для уравнения Лапласа»

О новом подходе в методе функций Грина при решении краевых задач Дирихле и Неймана для уравнения Лапласа

Московский государственный университет тонких химических технологий им. М.В. Ломоносова, Москва, 119571, Россия

Описан новый подход в методе функций Грина при решении краевых задач Дирихле и Неймана для уравнения Лапласа на плоскости. В основе метода лежит построение «усеченной» функции Грина, что является достаточным для записи аналитического решения задачи.

Ключевые слова: уравнение Лапласа на плоскости, задачи Дирихле и Неймана, функция Грина, интегральные записи аналитических решений.

Введение. Уравнения эллиптического типа, к которому относится уравнение Лапласа, играют важную роль в приложениях. К ним приводят задачи о потенциальном движении несжимаемой жидкости, потенциале электростатического поля, стационарных тепловых и диффузионных процессах, потенциальном поле тяготения, а также задачи аэромеханики, теории упругости, электромагнетизма, дифракции и др.

Для линейных эллиптических уравнений второго порядка и, в частности, для уравнения Лапласа задачи Дирихле и Неймана являются основными краевыми задачами. Они детально разобраны в многочисленных руководствах по математической физике, в монографиях по теории ньютоновского потенциала, публикациях, касающихся применения соответствующих интегральных соотношений к изучению конкретных физических процессов. Для нахождения точных решений указанных задач существуют различные аналитические подходы, в основе которых лежат: теория потенциала и метод интегральных уравнений, метод отражения, метод конформных отображений, метод разделения переменных, метод интегральных преобразований, основанный на теории спектральных задач, метод разложения искомого решения в соответствующие ряды, функции единичных источников и диполей 5. И как это ни странно, но в столь, казалось, завершенной области математической физики еще остались «математические резервы» для переосмысления основ некоторых развитых аналитических подходов, в частности, метода функций Грина при решении краевых задач Дирихле и Неймана для уравнения Лапласа на плоскости. Следствием последнего является существенное сокращение технических трудностей, связанных с нахождением

точных аналитических решений классических краевых задач Дирихле и Неймана для уравнения Лапласа. Последнее касается ряда областей, наиболее часто встречающихся в практических приложениях: бесконечная или полубесконечная полоса, полуплоскость или ее четверть, прямоугольник, круг или его внешность, части круга, кольцо, области в параболической, эллиптической и биполярной системах координат. Следует подчеркнуть, что двумерные задачи Дирихле и Неймана могут быть точно решены только для сравнительно простых областей [6]. Полученные в настоящей статье результаты позволяют предвидеть интересные перспективы в дальнейшем развитии аналитической теории краевых задач для уравнений эллиптического типа.

Постановка задачи. Пусть Б — конечная или частично ограниченная выпуклая область изменения М(х, у); Г — кусочно-гладкий контур, ограничивающий область Б; п — внешняя нормаль к Г, вектор, непрерывно меняющийся на Г. В области Б ищется гармоническая функция Т(х,у)е С2 (Б)пС0 (Б), §гаёЫ Т(Ы)е С0 (Б)х

х(( = Б + Г), удовлетворяющая уравнению Лапласа внутри Б

а на границе Г граничным условиям вида (задача Дирихле)


источники:

http://cyberleninka.ru/article/n/o-novom-podhode-v-metode-funktsiy-grina-pri-reshenii-kraevyh-zadach-dirihle-i-neymana-dlya-uravneniya-laplasa