Где используется система линейных уравнений

Презентация на тему «Применение систем линейных уравнений для решения прикладных задач»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

ГПОУ «Донецкий политехнический колледж» Применение систем линейных уравнений для решения прикладных задач. Прелодаватель математики Низамова И . В. Донецк 2018

Математика – царица наук Карл Фридрих Гаусс

Системы линейных уравнений широко используются в задачах экономики, физики, электротехники, программирования и других наук.

Уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных. Система линейных уравнений с n переменными:

Числа aij (i=1,2,…,m, j=1,2,…,n) называются коэффициентами при переменных, а bi (i=1,2,…,m) – свободными членами. Решение системы уравнений — это последовательность чисел (k1, k2, . kn), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x1, x2. xn дает верное числовое равенство.

Система, имеющая хотя бы одно решение, называется совместной; система, не имеющая ни одного решения — несовместной. Методы решения: По формулам Крамера; Исключение неизвестных ( метод Гаусса); С помощью обратной матрицы.

Метод Крамера Если главный определитель системы то система имеет единственное решение, которое можно найти по формулам Крамера: где –определитель, полученный из главного заменой i-того столбца столбцом свободных членов.

Метод Гаусса Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы. Расширенная матрица содержит вместе с коэффициентами при неизвестных свободные члены системы уравнений.

Матричный метод Cистему линейных уравнений записывают в матричной форме: AX = B, где A — основная матрица системы; B — столбец свободных членов; X — столбцы решений системы; Матричное уравнение умножают слева на A–1 (матрицу, обратную к матрице A). Так как A− 1A = E, то X = A -1B. Метод применим, если определитель системы не равен 0.

Проверка домашнего задания Решить систему линейных уравнений всеми известными методами

Применение систем линейных уравнений для решения прикладных задач. Цель занятия: формировать умение составлять системы линейных уравнений по текстовому условию задачи; закрепить применение методов Крамера и Гаусса решения систем линейных уравнений.

Доклад №1. Задача по электротехнике Два источника постоянного тока соединены параллельно, имеют E1=11,5 B, r1=2,5 Oм, E1=16,5 B, r1=6 Oм, и нагрузочный резистор сопротивлением Rн=30 Oм. Определить значения и направление токов через источники и нагрузку.

В соответствии со вторым законом Кирхгофа Для контура, включающего в себя два источника и имеем: Для контура с источником и сопротивлением нагрузки при обходе по часовой стрелке имеем: Подставив числовые данные, получим:

Первое уравнение умножим на 6 и сложим со вторым и третьим. Получим: второе уравнение умножим на (-6) и сложим с третьим. Получим: Отсюда

Доклад №2. Из Москвы в Казань необходимо перевезти оборудование трех типов: I типа — 95 ед., II типа — 100 ед., III типа — 185 ед. Для перевозки оборудования завод может заказать три вида транспорта. Количество оборудования каждого типа, вмещаемого на определенный вид транспорта, приведено в таблице. Установить, сколько единиц транспорта каждого вида потребуется для перевозки этого оборудования. Тип оборудования Количество оборудования Т1 Т2 Т3 I 3 2 1 II 4 1 2 III 3 5 4

Пусть x ‒ количество единиц I-ого вида транспорта, y ‒ количество единиц II-ого вида транспорта, z ‒ количество единиц III-его вида транспорта. Тогда Решим систему уравнений методом Крамера: Δ = =12+12+20-3-30-32=-21 ; Δх = =380+740+500-185-950-800=-315; х = = 15;

Δу = =1200+570+740-300-1110-1520=-420; у = = 20; Δz = =555+600+1900-285-1500-1480=-210; Z = = 10. Ответ: Транспорта I-ого вида использовано 15 единиц, II-ого вида 20 единиц, а III-го вида 10 единиц.

Доклад №3. Из некоторого листового материала необходимо выкроить 360 заготовок типа А, 300 заготовок типа Б и 675 заготовок типа В. При этом можно применять три способа раскроя. Количество заготовок, получаемых из каждого листа при каждом способе раскроя, указано в таблице: Найти количество листов материала, раскраиваемых соответственно первым, вторым и третьим способами. Тип заготовки Способ раскроя 1 2 3 А 3 2 1 Б 1 6 2 В 4 1 5

Обозначим через x, y, z количество листов материала, раскраиваемых соответственно первым, вторым и третьим способами. По условию задачи составим систему уравнений:

Ответ: первым способом раскраивается 90 листов, вторым – 15, третьим – 60.

Доклад №4. Частным лицом куплены три пакета акций общей стоимостью 485 ден. ед., причем акции первой группы куплены по 5 ден. ед. за акцию, второй – по 20, третьей – по 13. Через месяц стоимость акций первой, второй и третьей групп составила соответственно 6, 14 и 19 ден. ед., а стоимость всего пакета была 550 ден. ед. Еще через месяц они стоили по 8, 22 и 20 ден. ед. соответственно, а весь пакет стоил 660 ден. ед. Cколько акций каждой группы было куплено?

Пусть акции I-ой группы было куплено х штук, акций II-ой группы y штук, акций III-ей группы z штук. Согласно условию задачи имеем: Решим систему уравнений методом Крамера: Δ = = = 1400+3040+1716-1456-2090-2400=210;

= = 135800+250800+157300-120120-202730-220000=1050; = = 55000+73720+51480-57200-62700-58200=2100; = = 46200+88000+64020-54320-60500-79200=4200; x = = 5; y = = 10; z = = 20; Ответ: Акций I-й группы было куплено 5 штук, акций II-ой группы было куплено 10 штук, акций III-ей группы было куплено 20 штук.

Карл Фридрих Гаусс Карл Фридрих Гаусс родился 30 апреля 1777 г. Гаусс с детства проявлял все признаки гениальности. Главный труд всей своей жизни, «Арифметические исследования», юноша закончил ещё в 1798 г. В 1799 г. Гаусс заочно защищает диссертацию. Самым знаменитым трудом, проделанным Карлом Фридрихом Гауссом, была работа под названием «Теория движения небесных тел». Именно в ней ученый предложил теорию возмущения орбит. Знаменитая теорема алгебры, термин «гауссова кривизна», основы дифференциальной геометрии вошли в основу фундаментальных математических законов.

Габриэль Крамер Габриэль Крамер родился 31 июля 1704 года в Женеве (Швейцария) в семье врача. Уже в детстве он опережал своих сверстников в интеллектуальном развитии и демонстрировал завидные способности в области математики. В 18 лет он успешно защитил диссертацию. Талантливый учёный написал множество статей на самые разные темы: геометрия, история, математика, философия. В 1730 году он опубликовал труд по небесной механике. Крамер является одним из создателей линейной алгебры. В работе «Введение в анализ алгебраических кривых» Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем – метод Крамера.

Закрепление нового материала. Задача №1. Рассчитать сложную электрическую цепь, если E1=246 B, R1=0,3 Ом, E2=230 B, R2=1 Ом, R3=24 Ом, RВТ1= RВТ2=0.

Задача №2. Предприятием по производству бытовой техники в 1 квартале выпущено 4000 вентиляторов, 2000 миксеров и 6000 электрочайников на общую сумму 23 млн рублей. Во 2 квартале выпущено 3000 вентиляторов, 1000 миксеров и 4000 электрочайников на общую сумму 15,6 млн рублей. В 3 квартале выпущено 1000 вентиляторов, 3000 миксеров и 1000 электрочайников на общую сумму 7,8 млн рублей. Найти стоимость одного вентилятора, одного миксера и одного электрочайника.

Рефлексия Выберите смайлик, характеризующий ваше состояние на занятии.

Домашнее задание. Если ширину производственной прямоугольной площадки увеличить на 4 м, а ее длину уменьшить на 2 м, то ее площадь увеличится на 32 ; если же ширину уменьшить на 3 м, а длину увеличить на 1 м, то ее площадь уменьшится на 39 . Найдите длину и ширину площадки.

Системы уравнений: история, понятия

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Решением системы уравнений называется упорядоченный набор чисел — значений неизвестных, при подстановке которых каждое уравнение системы обращается в верное равенство.

Системой линейных алгебраических уравнений (СЛАУ) называется система вида:

$$\left\<\begin a_ <11>\cdot x_<1>+a_ <12>\cdot x_<2>+\ldots+a_ <1 n>\cdot x_=b_ <1>\\ a_ <21>\cdot x_<1>+a_ <22>\cdot x_<2>+\ldots+a_ <2 n>\cdot x_=b_ <2>\\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\ a_ \cdot x_<1>+a_ \cdot x_<2>+\ldots+a_ \cdot x_=b_ \end\right.$$

Упорядоченный набор значений $\left\^<0>, x_<2>^<0>, \ldots, x_^<0>\right\>$ называется решением системы, если при подстановке в уравнения все уравнения превращаются в тождество.

История систем уравнений

Задачи, соответствующие современным задачам на составление и решение систем уравнений с несколькими неизвестными, встречаются еще в вавилонских и египетских рукописях II века до н.э., а также в трудах древнегреческих, индийских и китайских мудрецов. В китайском трактате «Математика в девяти книгах» словесно изложены правила решения систем уравнений, были замечены некоторые закономерности при решении.

Основные понятия и применения

Система может состоять из алгебраических уравнений, линейных алгебраических уравнений, нелинейных уравнений, дифференциальных уравнений.

Методы решения системы уравнений зависят от типа системы. Например, решения систем линейных алгебраических уравнений хорошо известны ( метод Крамера, метод Гаусса, матричный метод, метод итераций и т.д.). Для нелинейных же систем общего аналитического решения не найдено, они решаются разного рода численными методами. Аналогично дело обстоит и с системами дифференциальных уравнений.

Системы линейных уравнений широко используются в задачах экономики, физики, химии и других науках.

Решение систем линейных алгебраических уравнений — одна из основных задач вычислительной линейной алгебры. Хотя задача решения именно системы линейных уравнений сравнительно редко представляет самостоятельный интерес для прикладных задач, но от умения эффективно решать данные системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности — нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма.

Применение систем линейных уравнений в экономике

Большой объем расчетных математических задач приходится на решение систем линейных алгебраических уравнений. Многие задач управленческого и экономического, технологического характера строятся как линейные алгебраические, либо сводятся к ним.

Актуальность темы заключается в том, что известные приемы и методы решения систем линейных уравнений применимы для решения задач с практическим содержанием, в частности связанных со специальностью «Прикладная информатика в экономике».

Цель работы: рассмотреть различные способы решения систем линейных уравнений, показать примеры их практического применения.

Скачать:

ВложениеРазмер
Большой объем расчетных математических задач приходится на решение систем линейных алгебраических уравнений. Многие задач управл2.06 МБ
Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

«Яндекс» открыл доступ к нейросети «Балабоба» для всех пользователей


источники:

http://www.webmath.ru/poleznoe/formules_5_0.php

http://nsportal.ru/ap/library/drugoe/2016/02/15/primenenie-sistem-lineynyh-uravneniy-v-ekonomike