Где встречаются тригонометрические уравнения экономике программировании геодезии черчении

«Тригонометрические уравнения»

Задание по алгебре для 10 класса — «Тригонометрические уравнения»

Задание по алгебре для 10 класса — «Тригонометрические уравнения»

Навигация (только номера заданий)

0 из 10 заданий окончено

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

Информация

Выполните задание онлайн олимпиады и узнайте результат.
Для зарегистрированных участников, результаты отправляются на электронную почту.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Результаты

Правильных ответов: 0 из 10

Вы набрали 0 из 0 баллов ( 0 )

Средний результат
Ваш результат

Рубрики

Поздравляем!
Вы отлично справились с заданием.
Ваш результат соответствует 1 месту.

Поздравляем!
Вы хорошо справились с заданием.
Ваш результат соответствует 2 месту.

Поздравляем!
Вы выполнили задние допустив незначительное количество ошибок.
Ваш результат соответствует 3 месту.

Сделайте работу над ошибками.
Попробуйте пройти тестирование еще раз и добиться хорошего результата.
Ваш результат может стать значительно лучше.

Тригонометрия в реальной жизни

Содержимое публикации

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ПРОФЕССИОНАЛЬНАЯ

«КУБАНСКИЙ ИНСТИТУТ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ»

по дисциплине: «Математика»

на тему: «Тригонометрия в реальной жизни»

Выполнил студент группы 20-ПД1-9

Онищенко Виктория Александровна

Преподаватель математики, Ширяева Е.А.

1. История развития тригонометрии. Древнейшие века………………………..5

1.1 Дальнейшее развитие тригонометрии. Средние века……………………8

2. Тригонометрия в реальной жизни…………………………………. ………11

2.1 Тригонометрия в алгебре…………………………………..………. ….11

2.2 Тригонометрия в физике……………………………..…………………. 13

2.3 Тригонометрия в навигации…………………………………. …..……..14

2.4 Тригонометрия в биологии и медицине…………………………………15

2.5 Тригонометрия в геодезии, строительстве и архитектуре……..……….19

2.6 Тригонометрия в информатике……………..………………………. ….20

2.7 Тригонометрия в музыке………………………………………….….…..20

В современном мире значительное внимание уделяют математике, как одной из областей научной деятельности и изучения. Как мы знаем, одной из составляющих математики, является тригонометрия.

Тригонометрия — это раздел математики, который изучает тригонометрические функции.

Актуальность темы «Тригонометрия в реальной жизни» заключается в том, что знания тригонометрии откроют новые способы решения различных задач во многих областях науки и упростят понимание некоторых аспектов различных наук.

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия используется в астрономии для измерения расстояния до недалёких звёзд, в географии для измерения расстояния между ориентирами, для контроля системы навигации спутников. Так же тригонометрические функции используются в таких областях как медицина, анализ финансовых рынков, теория вероятностей, экономика, оптика, фармацевтика, химия, картография, архитектура, биология и другие. Именно поэтому я считаю, что данная тема актуальна с практической точки зрения.

Цель моего проекта — это развитие интереса к изучению темы «Тригонометрия» в курсе математики, расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология и т.п.

Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, позволяют лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

1. Познакомиться с историей возникновения и развития тригонометрии.

2. Рассмотреть примеры практического воздействия тригонометрии в различных сферах деятельности

3. Показать на конкретных примерах возможности применения тригонометрии в жизни человека.

Методы: Поиск и сбор информации

История развития тригонометрии. Древнейшие века

Что такое тригонометрия? Данный термин подразумевает под собой раздел в математике, который занимается изучением зависимости между различными величинами углов, изучает длины сторон треугольника и алгебраические тождества тригонометрических функций. Трудно представить, что данная область математики встречается нам в повседневной жизни.

Давайте обратимся к истории ее развития, этапам формирования. С древних времен тригонометрия набирала свои зачатки, развивалась и показывала первые результаты. Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Можно отметить, что в древние времена тригонометрия применялась для точного установления времени суток, нахождения географических координат текущего места, вычисления предстоящего местоположения небесных светил, эпизодов их восхода и захода, затмений Солнца и Луны, подсчета дистанции между городами с известными географическими координатами.

Гномон— древний астрономический механизм, вертикальный предмет (стела, колонна, шест), который позволяет с помощью наименьшей длины его тени в полдень определить угловую высоту солнца.

Таким образом, котангенс представлялся нам как длина тени от вертикального гномона высотой 12 (иногда 7) единиц. Отметим, что в первоначальном варианте, данные определения использовались для расчёта солнечных часов. Тангенс представлялся тенью падающей от горизонтального гномона. Косеканс и секанс понимаются в качестве гипотенуз, которые соответствуют прямоугольным треугольникам.

Длительную историю имеет представление синуса. История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите — дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Тригонометрические функции встречаются ещё в 3 в. до н.э. в трудах знаменитых математиков Античной Греции — Евклида, Архимеда, Аполлония Пергского. В римский промежуток времени данные взаимоотношения уже довольно регулярно изучались Менелаем (I в. н. э.), хотя и не получили особого названия. Современный синус угла α, например, изучается как полухорда, на которую опирается центральный угол величиной α, или как хорда удвоенной дуги.

В последующий промежуток математика длительное время наиболее стремительно формировалась индийскими и арабскими учёными. В 4-5 веках возник, в частности, ранее особый термин в трудах по астрономии знаменитого индийского учёного Ариабхаты (476-ок. 550), именем коего назван первый индусский спутник Земли. Отрезок он назвал ардхаджива (ардха—половина, джива—тетива излом, которую напоминает ось). Позже привилось более сокращенное наименование джива. Арабскими математиками в IXв. термин джива (либо джиба) было заменено на арабское слово джайб (вогнутость). При переходе арабских математических текстов в XIIв. это слово было заменено латинскимсинус (sinus—изгиб)

Определение и возникновение термина «косинус» носит более кратковременный и недалекий характер. Под косинусом понимается «дополнительный синус» (или иначе «синус дополнительной дуги». Интересным фактом является то, что первые способы решения треугольников, которые основаны на зависимости между сторонами и углами треугольника, найденные астрономом из Древней Греции Гиппархом во втором веке до нашей эры. Данным изучением также занимался Клавдий Птолемей. Постепенно, появлялись новые факты о зависимости между отношениями сторон треугольника и его углами, начали применять новое определение — тригонометрическая функция.

Существенный вклад в формирование тригонометрии привнесли арабские эксперты Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который собрал таблицы синусов и тангенсов посредством 10’ с правильностью вплоть до 1/604. Теорему синусов ранее знали индийский профессор Бхаскара (р. 1114, год смерти безызвестен) и азербайджанский астролог и ученый Насиреддин Туси Мухамед (1201-1274). Помимо этого, Насиреддин Туси в собственной работе «Труд о полном четырехстороннике» рассказал прямую и сферическую тригонометрию как независимую дисциплину.

Тангенсывозникли в взаимосвязи с заключением задачи об установлении длины тени. Тангенс (а кроме того котангенс) установлен в X веке аравийским арифметиком Абу-ль-Вафой, который составил и первоначальные таблицы для нахождения тангенсов и котангенсов. Но данные открытия длительное время сохранились незнакомыми европейским ученым, и тангенсы были вновь открыты только в XIV веке германским арифметиком, астрономом Регимонтаном (1467 г.). Он аргументировал теорему тангенсов. Региомонтан составил также детальные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Обозначение «тангенс», происходившее от латинского tanger (касаться), возникло в 1583 г. Tangens переводится как «затрагивающий» (линия тангенсов – касательная к единичной окружности).
Дальнейшее формирование тригонометрия получила в работах выдающихся астрологов Николая Коперника (1473-1543) , Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а кроме того в трудах математика Франсуа Виета (1540-1603), который целиком решил проблему в определении абсолютно всех компонентов плоского либо сферического треугольника по трем данным.

1.1 Дальнейшее развитие тригонометрии. Средние века

Слово «тригонометрия» впервые встречается (1505 г) в заглавии книги немецкого теолога и математика Питискуса. У данного слова греческое происхождение: треугольник, мера. Иными словами, тригонометрия — наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Долгое время тригонометрия носила исключительно геометрический вид, т. е. данные, которые мы в настоящее время формулируем в определениях тригонометрических функций, формулировались и аргументировались с поддержкой геометрических понятий и утверждений. Пожалуй, максимальные стимулы к формированию тригонометрии появлялись в взаимосвязи с решением задач астрономии, что давало огромный положительный интерес (например, с целью решения вопросов установления месторасположения корабля, прогноза затемнения и т. д.). Астрологов занимали соотношения между сторонами и углами сферических треугольников. А арифметики древности успешно справлялись с поставленными вопросами.

Начиная с XVII в., тригонометрические функции стали применять к решению уравнений, вопросов механики, оптики, электричества, радиотехники, с целью отображения колебательных действий, распространения волн, перемещения разных элементов, для исследования переменного гальванического тока и т. д. По этой причине тригонометрические функции всесторонне и глубоко изучались, и получили существенное значение для целой математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греческого gwnia — угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.

Тригонометрия в реальной жизни

Современное общество характеризуется постоянными изменениями, открытиями, созданием высокотехнологичных изобретений, улучшающих нашу жизнь.

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света — без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии — это геодезист. Используя теодолит и нивелир либо более сложный прибор — тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Помимо этого, тригонометрия взаимодействует с биологией, медициной, геофизикой, навигацией, информатикой и даже музыкой.

Познакомимся по порядку с взаимодействием в каждой отрасли.

Тригонометрия в алгебре

Первое, и самое очевидное, место применения тригонометрии – это ее применение в алгебре. Именно благодаря тригонометрическим функциям решаются очень сложные, требующие больших вычислений уравнения и задачи.

Основные тригонометрические тождества (рис. 1) задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности. Они позволяют выразить одну тригонометрическую функцию через любую другую.

Рисунок 1 — Основные тригонометрические тождества

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого «тригонометрического круга» (рис. 2), то вся тригонометрия будет вам подвластна.

Рисунок 2 – Тригонометрический круг

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Как мы знаем, во всех случаях, где необходимо взаимодействовать с периодическими процессами и колебаниями мы приходим к использованию тригонометрических функций. При этом не имеет значения, что это такое: акустика, оптика или качание маятника.

Тригонометрия в физике

Кроме алгебры, тригонометрия оказывает прямое влияние и воздействие в физике.

При погружении объектов в воду они никак не изменяют ни формы, ни объемов. Полный секрет — зрительный эффект который вынуждает наше зрение принимать предмет по-другому. Простые тригонометрические формулы и значения синуса угла падения и преломления полупрямой предоставляют вероятность высчитать постоянный показатель преломления при переходе светового луча из сферы в сферу. К примеру, радуга появляется из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

sin α / sin β = n1 / n2

где: n1 является показателем преломления первой среды; n2 является показателем преломления второй среды; α-углом падения, β-углом преломления света.

Попадание в верхние слои атмосферы планет заряженных элементов солнечного ветра обусловливается взаимодействием магнитного поля земли с солнечным ветром.

Сила, действующая на перемещающуюся в магнитном область заряженную частичку, именуется силой Лоренца. Она соразмерна заряду частицы и векторному произведению поля и скорости перемещения частицы.

Раскрывая практические стороны применения тригонометрии в физике, приведем пример. Данная задача должна решаться с использованием тригонометрических формул и способов решения. Условия задачи: на наклонной плоскости, угол которой 24,5о, располагается тело массой 90 кг. Необходимо найти, какой силой располагает тело, давящее на на наклонную плоскость (т.е какое давление оказывает тело на эту плоскость) (рис.6).

Обозначив оси Х и У, начнем строить проекции сил на оси, для начала воспользовавшись данной формулой:

ma = N + mg, затем смотрим на рисунок,

Х : ma = 0 + mg sin24,50

Y : 0 = N – mg cos24,50

подставляем массу, находим, что сила равна 819 Н.

Тригонометрия в навигации

Навигация (это слово происходит от латинского navigatio – плыву на судне) – одна из наиболее древних наук. Ученые разрабатывают несложные навигации, представляющие собой построение маршрута из одной точки в другую, его оценка и выбор лучшего варианта из всех предложенных. Данные маршруты необходимы мореплавателям, которые в течение своего путешествия сталкиваются с множеством трудностей, преград, вопросов по курсу движения. Также навигация необходима: летчикам, которые управляют сложными высокотехничными самолетами, ориентируются, порой в очень экстремальных ситуациях; космонавтам, чья работа связана с риском для жизни, с сложным построением маршрута и его освоением.

Интересным примером можно описать следующее. При создании маршрута мореходцами, необходимо точная и кропотливая работа. Так, для прокладки курса корабля на карте, которая была выполнена в проекции Герхарда Меркатора в 1569году, была острая необходимость определить , широту. Однако при выходе в море, в локациях до XVII века мореплавателями широта не указывалась. Впервые применил тригонометрические расчеты в навигации Эдмонд Гюнтер(1623).

С помощью тригонометрии, пилоты могли рассчитывать ветряные погрешности, для наиболее точного и безопасного ведения самолета.

Для решения навигационного треугольника скоростей используются счетные устройства, использующие навигационную линейку и подсчеты в уме.

Тригонометрия в биологии и медицине

Четвертой областью, где серьезное влияние и помощь оказывает тригонометрия, являются сразу две области: медицина и биология.

Одно из фундаментальных свойств живой природы — это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, — это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях. Биоритмы подразделяют на физиологические, имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды)», а в какую – «корешки».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись — бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов».

Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов

· Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

· Эмоциональный цикл — 28 дней. Состояние нервной системы и настроение

· Интеллектуальный цикл — 33 дня. Определяет творческую способность личности

Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.

Тригонометрия в медицине. В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем — на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах.

Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Такой вывод был сделан после серии экспериментов, участникам которых предлагалось взглянуть на окружающий мир через призмы, увеличивающие этот угол.

Такое искажение приводило к тому, что подопытные носители призм воспринимали удаленные объекты как более близкие и не могли справиться с простейшими тестами. Некоторые из участников экспериментов даже наклонялись вперед, стремясь выровнять свое тело перпендикулярно неправильно представляемой поверхности земли. Однако по происшествии 20 минут они привыкли к искаженному восприятию, и все проблемы исчезли. Это обстоятельство указывает на гибкость механизма, с помощью которого мозг приспосабливает зрительную систему к меняющимся внешним условиям. Интересно заметить, что после того, как призмы были сняты, некоторое время наблюдался обратный эффект — переоценка расстояния.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

Тригонометрия в геодезии, строительстве и архитектуре

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Вся «классическая» геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что «решают» треугольники.

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат.

Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства. Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения.

Ситуация меняется , так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу.

Тригонометрия в информатике

Не обошла тригонометрия со своим влиянием и информатику. Так, ее функции применимы для точных расчётов.

Тригонометрия оказывает серьезную роль и помощь в развитии и в процессе работы с графической информацией. Если нужно смоделировать процесс, с описанием в электронном виде, с вращение определенного объекта вокруг некоторой оси. Возникает поворот на некоторый угол. Для определения координат точек придётся умножать на синусы и косинусы.

Так, можно привести в пример Джастина Уиндела, программиста и дизайнера, работающего в Google Grafika Lab. Он опубликовал демо, которое показывает пример использования тригонометрических функций, чтобы создать динамическую анимацию.

Тригонометрия в музыке

Музыкальная сфера деятельности также взаимодействует с тригонометрией.

Представляю вашему вниманию интересную информацию о неком методе, который точно обеспечивает связь между тригонометрией и музыкой.

Этот метод анализа музыкальных произведений получил название «геометрическая теория музыки». С его помощью основные музыкальные структуры и преобразования переводятся на язык современной геометрии.

Каждая нота в рамках новой теории представляется как логарифм частоты соответствующего звука (нота «до» первой октавы, к примеру, соответствует числу 60, октава – числу 12). Аккорд, таким образом, представляется как точка с заданными координатами в геометрическом пространстве. Аккорды сгруппированы в различные «семейства», которые соответствуют различным типам геометрических пространств.

При разработке нового метода авторы использовали 5 известных типов музыкальных преобразований, которые ранее не учитывались в теории музыки при классификации звуковых последовательностей – октавная перестановка (O), пермутация (P), транспозиция (T), инверсия (I) и изменение кардинальности (C). Все эти преобразования, как пишут авторы, формируют так называемые OPTIC-симметрии в n-мерном пространстве и хранят музыкальную информацию об аккорде – в какой октаве находятся его ноты, в какой последовательности они воспроизведены, сколько раз повторяются и проч. С помощью OPTIC-симметрий классифицируются подобные, но не идентичные аккорды и их последовательности.

Авторы статьи показывают, что различные комбинации этих 5-ти симметрий формируют множество различных музыкальных структур, одни из которых уже известны в теории музыки (последовательность аккордов, к примеру, будет выражаться в новых терминах как OPC), а другие являются принципиально новыми понятиями, которые, возможно, возьмут на вооружение композиторы будущего.

В качестве примера авторами приводится геометрическое представление различных типов аккордов из четырех звуков – тетраэдр. Сферы на графике представляют типы аккордов, цвета сфер соответствуют величине интервалов между звуками аккорда: синий – малые интервалы, более теплые тона – более «разреженные» звуки аккорда. Красная сфера – наиболее гармоничный аккорд с равными интервалами между нотами, который был популярен у композиторов XIX века.

«Геометрический» метод анализа музыки, по мнению авторов исследования, может привести к созданию принципиально новых музыкальных инструментов и новых способов визуализации музыки, а также внести изменения в современные методики преподавания музыки и способы изучения различных музыкальных стилей (классики, поп-музыки, рок-музыки и проч.). Новая терминология также поможет более углубленно сравнивать музыкальные произведения композиторов разных эпох и представлять результаты исследований в более удобной математической форме. Иными словами, предлагается выделить из музыкальных произведений их математическую суть.

Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8… Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

Изучив теоретические и прикладные аспекты тригонометрии, я поняла, что данная отрасль тесно связана со многими науками. Тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Тригонометрия тесно связана с физикой, встречается в природе, музыке, архитектуре, медицине, биологии, навигации и строительстве.

Тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться, поэтому знание её законов необходимо каждому.

Так, благодаря тригонометрическим функциям в медицине была открыта формула сердца, представляющая собой — комплексное алгебраически-тригонометрическое равенство, которое состоит из 8 выражений, 32 коэффициентов и 33 основных параметров, включающих возможность дополнительных просчетов при возникновении аритмии. Данное открытие помогает врачам выполнять более квалифицированно и качественно медицинскую помощь.

Отметим также, что вся классическая геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что «решают» треугольники. Процесс строительства зданий, дорог, мостов и других сооружений начинается с изыскательских и проектных работ. Все измерения на стройке проводятся с помощью геодезических инструментов, таких как теодолит и тригонометрический нивелир. При тригонометрическом нивелировании определяют разность высот между несколькими точками земной поверхности.

Знакомясь с ее влиянием в других областях, мы можем сделать вывод о том, что тригонометрия активно влияет на жизнедеятельность человека. Связь математики с окружающим миром позволяет «материализовать» знания школьников. Благодаря этому, мы можем адекватнее воспринять и усвоить знания и информацию, которую нам преподают в школе.

Цель моего проекта выполнена успешна. Мной было изучено влияние тригонометрии в жизни и развитие интереса к ней.

Для решения поставленной цели, мы выполнили следующие задачи:

1. Познакомились с историей возникновения и развития тригонометрии.

2. Рассмотрели примеры практического воздействия тригонометрии в различных сферах деятельности

3. Показали на конкретных примерах возможности применения тригонометрии в жизни человека.

Изучение истории возникновения данной отрасли поможет вызвать интерес у школьников, сформировать верное мировоззрение и повысить общую культуру старшеклассника.

Данная работа будет полезна для учащихся старших классов, которые ещё не увидели всю красоту тригонометрии и не знакомы с областями её применения в окружающей жизни.

1. Алимов Ш.А.и др. «Алгебра и начала анализа» Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др. «Алгебра и начала анализа» Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2013.

3. Глейзе р Г.И. История математики в школе: VII-VIII кл. — М.: Просвещение, 2012.

4. Глейзер Г.И. История математики в школе: IX-X кл. — М.: Просвещение, 2013.

5. Виленкин Н.Я. Функции в природе и техники: Кн. для внеклас. чтения IX-XX кл. – 2-е изд., испр. — М: Просвещение, 1985.

6. Рыбников К.А. История математики: Учебник. — М.: Изд-во МГУ, 1994. Олехник Задачи по алгебре, тригонометрии и элементарным функциям / Олехник, С.Н. и. — М.: Высшая школа, 2016. — 134 c.

7. Олехник, С.Н. Задачи по алгебре, тригонометрии и элементарным функциям / С.Н. Олехник. — М.: Высшая школа, 2013. — 645 c.

8. Потапов, М.К. Алгебра, тригонометрия и элементарные функции / М.К. Потапов. — М.: Высшая школа, 2014. — 586 c.

Где встречаются тригонометрические уравнения экономике программировании геодезии черчении

Тригонометрия

Тригонометрия в жизни

ТРИГОНОМЕТРИЯ В НАШЕЙ ЖИЗНИ

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации ,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в сейсмологии, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания — 360 локтей.

Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.

· точного определения времени суток;

· вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны ;

· нахождения географических координат текущего места;

· вычисления расстояния между городами с известными географическими координатами.

Гномон— древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест),

Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось

Ситуация меняется , так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца. В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея «измерения углов» не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму

d B и измерим длину с отрезка АВ. Затем измерим, например

с помощью астролябии, углы A и B . Эти данные, т.е. c , a и b

позволяют решить треугольник АВС и найти искомое

С =180- а -b, sinC=sin(180-a-b)=sin(a+b)

Затем с помощью теоремы синусов находим d .


источники:

http://www.art-talant.org/publikacii/47330-trigonometriya-v-realynoy-ghizni

http://www.sites.google.com/site/trigonometry121/trigonometria-v-zizni