Географическая система уравнений как решать

Системы уравнений с двумя переменными

п.1. Понятие системы уравнений с двумя переменными и её решения

п.2. Графический метод решения системы уравнений с двумя переменными

Поскольку каждое из уравнений с двумя переменными можно изобразить в виде графика на плоскости, графический метод решения систем таких уравнений достаточно удобен.

п.3. Примеры

Пример 1. Решите графическим способом систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm <4x+3y=0>& \end\right. \)
\( \mathrm \) – окружность с центром в начале координат
\( \mathrm <4x+3y=0>\) – прямая \( \mathrm \)

Система имеет два решения (–3; 4) и (3; –4)
Ответ: <(–3; 4) ; (3; –4)>.

б) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
\( \mathrm \) – гипербола \( \mathrm \)
y – x = 4 – прямая y = x + 4

Система имеет два решения (–5; –1) и (1; 5)
Ответ: <(–5; –1) ; (1; 5)>.

в) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
x 2 + y = 1 – парабола y = –x 2 + 1
x 2 – y = 7 – парабола y = x 2 – 7

Система имеет два решения (–2; –3) и (2; –3)
Ответ: <(–2; –3) ; (2; –3)>.

г) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
xy = 1 – гипербола \( \mathrm \)
x 2 + y 2 = 2 – окружность с центром в начале координат, радиусом \( \mathrm<\sqrt<2>> \)

Система имеет два решения (–1; –1) и (1; 1)
Ответ: <(–1; –1) ; (1; 1)>.

Пример 2*. Решите графическим способом систему уравнений
a) \( \left\< \begin < l >\mathrm & \\ \mathrm <\frac1x-y=1>& \end\right. \)
x 3 – y = 1 – кубическая парабола y = x 3 – 1, смещённая на 1 вниз.
\( \mathrm <\frac1x-y=1>\) – гипербола \( \mathrm \), смещённая на 1 вниз

Система имеет два решения (–1; –2) и (1; 0)
Ответ: <(–1; –2) ; (1; 0)>.

б) \( \left\< \begin < l >\mathrm <|x|+|y|=2>& \\ \mathrm & \end\right. \)
|x| + |y| = 2 – квадрат с диагоналями 4, лежащими на осях
x 2 + y 2 = 4 – окружность с центром в начале координат, радиусом 2

Система имеет четыре решения (2; 0), (0; 2) , (–2; 0) и (0; –2)
Ответ: <(2; 0) ; (0; 2) ; (–2; 0) ; (0; –2)>.

в) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
y – x 2 = 4x + 6 – парабола y = (x 2 + 4x + 4) + 2 = (x + 2) 2 + 2, ветками вверх, смещённая на 2 влево и на 2 вверх
y + |x| = 6 – ломаная, y = –|x| + 6. Для x > 0, y = –x + 6, для x 0, y = x, для x

Графический метод решения системы уравнений

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы будем рассматривать решение систем двух уравнений с двумя переменными. Вначале рассмотрим графическое решение системы двух линейных уравнений, специфику совокупности их графиков. Далее решим несколько систем графическим методом.

Географическая система уравнений как решать

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим способом систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube


источники:

http://interneturok.ru/lesson/algebra/9-klass/sistemy-uravneniy/graficheskiy-metod-resheniya-sistemy-uravneniy

http://www.sites.google.com/site/7klassdistancionnoeobucenie/sistema-linejnyh-uravnenij-graficeskij-sposob-resenia