Геометрическая интерпретация решения нелинейного уравнения

Геометрическая интерпретация решения нелинейного уравнения

Pers.narod.ru. Обучение. Лекции по численным методам. Приближённое решение нелинейных алгебраических уравнений

1. Приближенное решение нелинейных алгебраических уравнений

Дано нелинейное алгебраическое уравнение

Нелинейность уравнения означает, что график функции не есть прямая линия, т.е. в f(x) входит x в некоторой степени или под знаком функции.

Решить уравнение – это найти такое x* ∈ R: f(x*)=0. Значение x* называют корнем уравнения. Нелинейное уравнение может иметь несколько корней. Геометрическая интерпретация корней уравнения представлена на рис. 1. Корнями уравнения (1) являются точки x1*, x2*, x3*, в которых функция f(x) пересекает ось x.

Методы решения нелинейного уравнения (1) можно разделить на точные (аналитические) и приближенные (итерационные). В точных методах корень представляется некоторой алгебраической формулой. Например, решение квадратных уравнений, некоторых тригонометрических уравнений и т. д.

В приближенных методах процесс нахождения решения, вообще говоря, бесконечен. Решение получается в виде бесконечной последовательности <xn>, такой, что . По определению предела, для любого (сколь угодно малого) ε, найдется такое N, что при n>N, |xn x*| / (x) не меняет знак на отрезке [a, b], т.е. f(x) – монотонная функция, в этом случае отрезок [a,b] будет интервалом изоляции.

Если корней несколько, то для каждого нужно найти интервал изоляции.

Существуют различные способы исследования функции: аналитический, табличный, графический.

Аналитический способ состоит в нахождении экстремумов функции f(x), исследование ее поведения при и нахождение участков возрастания и убывания функции.

Графический способ – это построение графика функции f(x) и определение числа корней по количеству пересечений графика с осью x.

Табличный способ это построение таблицы, состоящей из столбца аргумента x и столбца значений функции f(x). О наличии корней свидетельствуют перемены знака функции. Чтобы не произошла потеря корней, шаг изменения аргумента должен быть достаточно мелким, а интервал изменения достаточно широким.

Решить уравнение x 3 ‑ 6x 2 +3x+11=0, т.е. f(x)= x 3 ‑ 6x 2 +3x+11.

Найдем производную f / (x)=3x 2 -12x+3.

Найдем нули производной f / (x)=3x 2 -12x+3=0; D=144-4*3*3=108;

X1== 0.268;

X2== 3.732;

Так как f / ()>0, то f / (x)>0 при , f / (x) / (x)>0 при . Кроме того, f()= 0. Следовательно, на интервале возрастает от до f(x1)= 3x1 2 -12x1+3=11.39; на интервале — убывает до f(x2)= 3x2 2 -12x2+3=-9.39 и на интервале возрастает до , т.е. уравнение имеет три корня.

Найдем интервалы изоляции для каждого из корней.

Рассмотрим для первого корня отрезок [-2, -1]:

f(-2)= -27 0, f / (x)>0 при т.е. этот отрезок является интервалом изоляции корня.

Рассмотрим для второго корня отрезок [1, 3]:

f(1)= 9>0, f(3)= -7 / (x) 0, f / (x)>0 при т.е. этот отрезок является интервалом изоляции корня.

Последовательность действий

Лабораторная работа №4

Тема. Приближенные методы решения нелинейных уравнений

Задание.

Решить нелинейное уравнение с заданной точностью e ,

двумя приближёнными (итерационными) методами:

1. методом половинного деления (все студенты)

2. методом, выбранным в соответствии с вариантом.

Вид уравнения и метод выбрать в соответствии с вариантом (приложение 1).

Порядок выполнения

1. Первый этап – этап локализация корней

· Определите область допустимых значений (ОДЗ) функции y=f(x).

· Определите количество действительных корней уравнения (1.1) и их расположение. Для этого протабулируйте функцию y=f(x) на достаточно большом отрезке [а, b] из ОДЗ с шагом h=(b-a)/10 и постройте её график (рис.1.1).

· Выделите отрезки, на которых существует единственный корень, используя теорему из математического анализа.

Теорема 1. Уравнения (1.1) имеет единственный корень в интервале x * Î (а, b), если функция у=f(x) удовлетворяет на отрезке xÎ [a, b] следующим условиям:

1. функция непрерывна,

2. f(a) f(b) ’ (x) сохраняет знак на этом отрезке.

· Определите нулевое приближение (нулевую итерацию) х0 для метода хорд и метода касательных.

· Протабулируйте функцию на отрезке, на котором существует единственный корень, и постройте ее график.

2. Второй этап – этап уточнения корня (этап построения итерационного процесса) до заданной точности

Для построения итерационного процесса используйте одну из приведенных ниже расчетных схем в зависимости от метода решения нелинейного уравнения (рис. 1.2, 1.3 и 1.4).

Рис.1.2 Расчетная схема метода половинного деления

Для формирования концов сужающегося отрезка [a, b] в методе половинного деления рекомендуется использовать логическую функцию Excel ЕСЛИ.

Рис.1.3. Расчетная схема метода хорд

Рис.1.4. Расчетная схема метода касательных

3. Условное форматирование

Условное форматированиеэто форматирование выделенных ячеек на основе некоторого критерия, в результате чего произойдет цветовое оформление ячеек, содержимое которых удовлетворяет заданному условию.

Чтобы сделать наглядным окончание итерационного процесса, воспользуйтесь Условным форматированием. Для этого выполните следующие действия:

· выделите ячейки последнего столбца расчетной схемы, где будет задаваться критерий окончания итерационного процесса (рис. 1.2, или 1.3, или 1.4);

· на вкладке Главная выберите панель Стили и нажмите кнопку Условное форматирование;

· в появившемся меню (рис.1.5) выберите пункт Правила выделения ячеек, а в подменю – пункт Меньше;

Рис.1.5. Установка параметров условного форматирования

· в левой части открывшегося диалогового окна Меньше (рис.1.6) задайте значение, которое будет использовано в качестве критерия (в нашем примере это адрес ячейки Е4 для всех трех расчетных схем, где находится значение точности ε).

· в выпадающем списке правой части окна выберите цвет, которым будут окрашены ячейки, отвечающие заданному условию; и нажмите кнопку ОК.

Рис.1.6. Диалоговое окно условного форматирования

В результате условного форматирования наглядно видно (рис.1.2, 1.3 и 1.4)., что решением нелинейного уравнения (1.1) с точностью e=0,01 является:

Приближенное значение корняНомер итерацииМетод
Х * ≈1,763n=3касательных
Х * ≈1,759n=3хорд
Х * ≈1,758n=8половин.деления

4. Исследовательская часть (численный эксперимент)

· Постройте таблицу и диаграмму зависимости количества итераций от заданной точности n=n(e) для e=0.1; 0.01; 0.001; 0.0001.

· Проанализируйте полученные результаты, сделайте соответствующие выводы.

5. Контрольный пример

Решите ваше нелинейное уравнение, используя надстройку Подбор параметра.

Последовательность действий

1. Подготовьте таблицу, как показано на рис.1.7. В ячейку А3 введите некоторое значение х0 из ОДЗ функции y=f(x). Это будет начальным приближением для итерационного метода, реализуемого приложением Подбор параметра. Ячейка В3 является изменяемой ячейкой в процессе работы надстройки. Введите в нее это же значение х0, а в ячейке С3 вычислите значение f(xn) для этого приближения.

2. Выберите вкладку Данные, на панели Работа с данными нажмите кнопку Анализ «что-если» и в открывшемся подменю выберите пункт Подбор параметра.

Рис.1.8. Окно «Подбор параметра»

3. В появившемся окне «Подбор параметра»сделайте установки, как показано на рис.1.8 и нажмите кнопку ОК.

Если все было проделано правильно, то в ячейке В3 (рис.1.7) будет получено приближенное значение корня нашего уравнения.

Проделайте все эти операции ещё раз с другим значением начального приближения х0., для определения других корней уравнения (если они имеются).

1. Какое уравнение называется нелинейным. Пример нелинейного уравнения.

2. Что является решением нелинейного уравнения.

3. Геометрическая интерпретация решения нелинейного уравнения.

4. Методы решения нелинейного уравнения (прямые и итерационные), в чем разница.

5. Два этапа решения нелинейного уравнения. Какие задачи ставятся на первом и втором этапах.

6. Табулирование функции, сеточная функция, шаг табулирования.

7. Построение итерационной последовательности. Понятие сходимости итерационной последовательности. Нахождение приближенного значения корня нелинейного уравнения с заданной точностью ε.

8. Критерии окончания итерационного процесса. Геометрический смысл критериев.

9. Метод половинного деления. Суть метода (см. вопросы 6,7).

10. Метод Ньютона (касательных). Как выбирается нулевое приближение (нулевая итерация). Суть метода (см. вопросы 6, 7).

11. Метод хорд. Как выбирается нулевое приближение (нулевая итерация). Суть метода (см. вопросы 6, 7).

Графический метод решения задач нелинейного программирования

Чтобы найти ее оптимальное решение, нужно выполнить следующие действия:

  1. Найти ОДР, определяемую ограничениями задачи. Если окажется, что эта область пуста, то это означает, что задача не имеет решения.
  2. Построить семейство линий уровня целевой функции f(х1, х2) = C при различных значениях числового параметра С.
  3. При решении задачи на минимум определить направление убывания, а для задачи на максимум — направление возрастания линий уровня ЦФ.
  4. Найти точку ОДР, через которую проходит линия уровня с наименьшим в задаче на минимум (соответственно, наибольшим в задачи на максимум) значением параметра С. Эта точка будет оптимальным решением. Если ЦФ не ограничена снизу в задаче на минимум (сверху — в задаче на максимум), то это означает, что задача не имеет оптимального решения.
  5. Найти координаты точки оптимума и определить в ней значение ЦФ.

Отметим, что в отличие от задачи ЛП точка оптимума в задаче НП не обязательно находится на границе ОДР. Ею также может быть внутренняя точка этого множества.

Пример . В задаче выпуклого программирования требуется:

  1. найти решение графическим методом;
  2. написать функцию Лагранжа и найти ее седловую точку, используя решение, полученное графически.

F(X) = x1 2 +(x2-2) 2
2x1+x2 ≥ 7
x1+2x2 ≥ 5

Решение. 1) Строим два ограничения, тем самым определяя ОДР. Можно использовать этот калькулятор. Также удобно строить ограничения через этот сервис.

Затем строим функцию цели. В данном случае это окружность.

Поскольку задача минимума, то ищем первое касание линии уровня области ОДР. В данном случае это точка пересечения с прямой 2x1+x2-7=0.
Найдем точку пересечения. Для этого построим уравнение касательной, проходящей через центр окружности O(0;2) и перпендикулярно прямой 2x1+x2-7=0 (можно использовать этот калькулятор). Получаем: 2x2-x1-4=0. Решая систему уравнений:
2x1+x2-7=0
2x2-x1-4=0,
получаем: x1=2, x2=3.

2) Найдем экстремум функции F(X) = x1 2 +(x2-2) 2 , используя калькулятор Функция Лагранжа :
L( X , λ )=F( X )+∑(λi·φi)
где F( X ) — целевая функция вектора X; φi(X) — ограничения в неявном виде (i=1..n)
В качестве целевой функции, подлежащей оптимизации, в этой задаче выступает функция: F(X) = x1 2 +(x2-2) 2
Перепишем ограничение задачи в неявном виде:
φ1(X) = 7 — (2*x1+x2) = 0 (X1)
φ2(X) = 5 — (x1+2*x2) = 0 (X2)
Составим вспомогательную функцию Лагранжа: L(X, λ) = x1 2 +(x2-2) 2 — λ1*(7 — (2*x1+x2)) — λ2*(5 — (x1+2*x2))
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенным множителям λ.
Составим систему:
∂L/∂x1 = 2*λ12+2*x1 = 0
∂L/∂x2 = λ1+2*λ2+2*x2-4 = 0
∂L/∂λ1 = 2*x1+x2-7 = 0
∂L/∂λ2 = x1+2*x2-5 = 0
Решив данную систему, получаем:
а) для случая X1: x1 = λ1/2 + λ2 + 2; x2 = 7 — 2x1
Откуда можно найти такие λ1 ≥ 0, λ2 ≥ 0. Пусть λ2 = 0. Тогда λ1 = 2; x1 = 2; x2 = 3.
Поскольку λ2 ≥ 0, то данное решение удовлетворяет условиям Куна-Таккера. Zmin(2;3)=5

б) для случая X2: x2 = λ1/2 + λ2 + 2; x1 = 5 — 2x2
Откуда можно найти такие λ1 ≥ 0, λ2 ≥ 0. Пусть λ2 = 0. Тогда λ1 = 2/5; x1 = 11/5; x2 = 3/5.
Поскольку λ1 ≥ 0, то данное решение удовлетворяет условиям Куна-Таккера. Zmin(11/5;3/5)=6.8

Минимальное значение составит Zmin(2;3)=5.


источники:

http://poisk-ru.ru/s57056t18.html

http://math.semestr.ru/math/nonlinear_graphic.php