Геометрическое истолкование уравнений и неравенств между координатами

Геометрический способ решения уравнений и неравенств с модулем, 9-й класс

Разделы: Математика

Класс: 9

Цель: рассмотреть геометрическое определение модуля. Уметь применять его для решения уравнений и неравенств с модулем, развивать умение исследовать уравнения с параметрами.

1. Организационная часть (Цель занятия)

2. Актуализация знаний

    Алгебраическое определение модуля

|a| =

Геометрическое истолкование двух уравнений между координатами в пространстве

Пусть имеем два уравнения с тремя переменными

Каждое из них определяет некоторую поверхность. Множество точек, общих обеим поверхностям, есть некоторая линия.

Пример. Уравнения x 2 + y 2 = R 2 и z = a, радиуса R с центром на оси Oz в точке (0; 0; a). Заметим, что эту же линию можно задать параметрически тремя уравнениями x = R cos φ, y = R sin φ, z = a.

В общем случае параметрические уравнения линии имеют вид:

Направляющий вектор прямой

Рассмотрим произвольную прямую. Каждый не равный нулю вектор, лежащий на данной прямой или параллельный ей, называется направляющим вектором данной прямой. Указанные векторы называются направляющими именно потому, что любой из них, будучи задан, определяет направление прямой.

Направляющий вектор прямой будем обозначать буквой l, его координаты – m, n, p:

Каноническое уравнение прямой

Пусть дана точка M0 (x0; y0; z0) и ненулевой вектор s (m; p; q). Требуется составить уравнение прямой l, проходящей через точку M0 и параллельной вектору s (этот вектор называют направляющим вектором прямой). Для этого заметим, что точка M (x; y; z) лежит на указанной прямой тогда и только тогда, когда векторы M0M (x — x0 ; y — y0; z — z0 ) и s (m; p; q) коллинеарны, т.е. тогда, когда координаты этих векторов пропорциональны:

Данные уравнения называются каноническими уравнениями прямой l.

Пример. Написать каноническое уравнение прямой, проходящей через точку M0 ( -2; -3; -1) и имеющей направляющий вектор s (3; 2; 4). Согласно равенствам имеем:

Параметрическое уравнения прямой в пространстве

Пусть прямая l задана каноническими уравнениями. Причем за параметр t каждое из отношений. Так как один из знаменателей отличен от нуля, а соответствующий числитель может принимать какие угодно значения, то областью изменения параметра t является вся числовая ось — ∞

Подставляя это значение в уравнение, получаем уравнение искомой прямой

Обычно его записывают в виде

Пример. Провести через M0(5, 2) прямую, перпендикулярную прямой

Решение. Угловой коэффициент прямой равен 3/2. Поэтому (на основании условия перпендикулярности) угловой коэффициент m искомой прямой будет m = — 2/3. Значит, требуемое уравнение такого:

или то же самое,

Решение. Обозначим через m (неизвестный) угловой коэффициент искомой прямой. Так как эта прямая проведена через точку M1 (x1; y1), то ее уравнение должно иметь вид

Для нахождения m используем то, что наша прямая проходит и через M2 (x2; y2) и, стало быть, числа x2 y2 должны удовлетворять уравнению, т.е.

откуда Задача решена. Если y1 = y2, то уравнение искомой прямой имеет вид y = y1. В этом случае прямая параллельна оси Оx. Если x1 = x2, то прямая, проходящая через точки M1 и M2, параллельна оси Oy, и ее уравнение имеет вид x = x1.

При написании данной курсовой работы стремилось раскрыться содержание основных понятий аналитической геометрии по теме «Прямая на плоскости и в пространстве», изучились основные уравнения прямой, привелись примеры. Изложение материала по возможности полно и доступно, так как преследовалась цель сообщить основные сведения по данной теме.Опыт показал, что для многих начинающих значительную трудность представляет решение типовых примеров и задач, поясняющих теоретический материал. Однако прежде, чем начать рассматривать пример или задачу, надо сначала изучить нужный раздел и добиться полной ясности в понимании соответствующих понятий и теорем. Поэтому в данную работу включены типовые задачи и даются методы их решения, чтобы материал лучше закрепился. Изучение математики и её методов в экономике, составляющих основу современной экономической математики, позволит будущему специалисту приобрести необходимые базовые навыки, расширить кругозор, повысить уровень мышления и общую культуру. Все это понадобится ему для ориентации в профессиональной деятельности и успешной работе.

Список литературы

1 Баврин И.И, Матросов В.Л. Высшая математика. «Гуманитарный издательский центр ВЛАДОС», М., 2002 г, — 400 с.

2 Данко П.Е., Кожевникова Т.Я., Попов А.Г. Высшая математика в упражнениях и задачах. В 2-х ч. 5-е изд., изд. «Высшая школа» М.,1997 г, -304с.

3 Натансон И.П. Краткий курс высшей математики. 6-е изд., стер. – СПб.: Издательство «Лань», 2003 г, — 736 с.: ил.

4 Шипачёв В.С. Основы высшей математики: учеб. Пособие для вузов/ под ред. Акад. А.Н. Тихонова. – 3-е изд., М.: Высш. школа, 1998. – 479 с.: ил.

5 Большой энциклопедический словарь под ред. Ю.В. Прохорова. Изд. «Большая Российская Энциклопедия». М., 2000. – 846 с

1 Большой энциклопедический словарь под ред. Ю.В. Прохорова. Изд. «Большая Российская Энциклопедия». М., 2000. – 846 с.

Геометрический способ решения уравнений и неравенств с модулем, 9-й класс

Цель: рассмотреть геометрическое определение модуля. Уметь применять его для решения уравнений и неравенств с модулем, развивать умение исследовать уравнения с параметрами.

1. Организационная часть (Цель занятия)

2. Актуализация знаний

    Алгебраическое определение модуля

|a| =

  • Вычислите модули чисел: 3, -8, 10, 0.
  • Решите уравнения
    |x| = 4|x| = -4|x| = 0
  • Решите неравенства
    |x| > 5|x|
  • Запишите к каждому чертежу соответствующее уравнение или неравенство

    3. Изучение нового материала

      Найдите расстояние между двумя точками координатной прямой

    Геометрическое истолкование выражения |x-a|- это расстояние между двумя точками координатной прямой.

    |x| = 1 |x| ≥ 3 |x| > 2 1 4, то уравнение имеет 2 корня
    в) Если а

    5. Домашнее задание

    1. Исследовать уравнение: |х+3| -|х-1|=а

    2. Решить № 13, № 16 (а,б)

    • Геометрический смысл модуля
    • Как применить геометрический смысл модуля для решения неравенств
    • Как применить геометрический смысл модуля для решения уравнений

    1. Мордкович А.Г. Алгебра ,9 класс, в двух частях,6 издание, Москва, Мнеиозина,2004

    2. «Метод координат», учебное пособие для учащихся, ОЛ ВЗМШ, Москва ,2002

    Хотите получать уведомления о возможности бесплатной публикации в журналах из списка ВАК и РИНЦ?

    Опубликовать статью в журнале из списка ВАК — бесплатно без регистрации


    источники:

    http://poisk-ru.ru/s50382t5.html

    http://www.infobraz.ru/library/mathematics/id18107