Гидроксид натрия железо уравнение реакции

Гидроксид натрия: способы получения и химические свойства

Гидроксид натрия (едкий натр) NaOH — белый, гигроскопичный, плавится и кипит без разложения. Хорошо растворяется в воде.

Относительная молекулярная масса Mr = 40; относительная плотность для тв. и ж. состояния d = 2,130; tпл = 321º C; tкип = 1390º C;

Способы получения

1. Гидроксид натрия получают электролизом раствора хлорида натрия :

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии натрия, оксида натрия, гидрида натрия и пероксида натрия с водой также образуется гидроксид натрия:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Карбонат натрия при взаимодействии с гидроксидом кальция образует гидроксид натрия:

Качественная реакция

Качественная реакция на гидроксид натрия — окрашивание фенолфталеина в малиновый цвет .

Химические свойства

1. Гидроксид натрия реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

2. Гидроксид натрия реагирует с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

3. Гидроксид натрия реагирует с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. С кислыми солями гидроксид натрия также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:

5. Гидроксид натрия взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется до силиката и водорода:

Фтор окисляет щелочь. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфордиспропорционируют в растворе гидроксида натрия:

Сера взаимодействует с гидроксидом натрия только при нагревании:

6. Гидроксид натрия взаимодействует с амфотерными металлами , кроме железа и хрома. При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксид натрия вступает в обменные реакции с растворимыми солями .

Хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с гидроксидом натрия взаимодействуют соли аммония .

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксид натрия разлагается при нагревании до температуры 600°С:

2NaOH → Na2O + H2O

9. Гидроксид натрия проявляет свойства сильного основания. В воде практически полностью диссоциирует , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксид натрия в расплаве подвергается электролизу . При этом на катоде восстанавливается натрий, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Опыты по химии. Железо

Взаимодействие железа с концентрированными кислотами

Безводная серная и азотная кислоты пассивируют железо, не реагируют с ним. Однако концентрированные растворы этих кислот растворяют железо. Приготовим две колбы с кусочками железа. Концентрированная азотная кислота бурно реагирует с железом. Продукты реакции – нитрат железа (III) и бурый газ – диоксид азота (IV).

Концентрированная серная кислота тоже реагирует с железом. Выделяется сернистый газ.

2Fe + 6H2SO4 = Fe2(SO4)3 + 3SO2↑ + 6H2O

И в том, и в другом случае происходит окисление железа до степени окисления +III. Даже небольшие количества воды, содержащиеся в концентрированных кислотах, сильно влияют на их свойства. Концентрированные и безводные кислоты – не одно и то же.

Оборудование: колбы, пинцет.

Техника безопасности. Соблюдать правила работы с концентрированными кислотами. Опыт проводится под тягой, так как выделяются ядовитые оксиды азота и оксид серы.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Качественные реакции на железо (II)

Как определить в растворе ионы железа (II)? Возьмем для опытов сульфат железа (II).

  1. Качественная реакция на ион железа (II) – реакция с красной кровяной солью.

Добавим красную кровяную соль ‑ гексацианоферрат калия K3[Fe(CN)6]. (Для определения железа (III) используют желтую кровяную соль K4[Fe(CN)6]). В присутствии ионов железа (II) образуется темно-синий осадок. Это — турнбуллева синь ‑ комплексная соль железа KFe[Fe(CN)6]).

Появление турнбуллевой сини доказывает присутствие в растворе ионов железа (II).

2 К3[Fe(CN)6 ] +3 Fe SO4 = KFe[Fe(CN)6])↓ + 3K2SO4

Турнбуллева синь очень похожа по свойствам на берлинскую лазурь и тоже служила красителем. Названа по имени одного из основателей шотландской фирмы по производству красителей «Артур и Турнбуль».

  1. Качественная реакция на ион железа (II) – реакция со щелочью.

Реакция со щелочью – еще один способ обнаружения ионов железа (II). Гидроксид железа (II) Fe(OH)2 — серо-зеленого цвета, гидроксид железа (III) Fe(OH)3 — бурый. Добавим щелочь (NaOH) в колбу с солью железа — образуется серо-зеленый осадок. Значит, в растворе присутствуют ионы железа (II). Образовавшийся осадок – гидроксид железа (II) Fe(OH)2.

Оборудование: колбы.

Техника безопасности. Соблюдать правила обращения с растворами щелочей и растворами гексацианоферратов. Не допускать контакта растворов гексацианоферратов с концентрированными кислотами.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Качественные реакции на железо (III)

Ионы железа (III) в растворе можно определить с помощью качественных реакций. Проведем некоторые из них. Возьмем для опыта раствор хлорида железа (III).

  1. Качественная реакция на ион железа (III)– реакция со щелочью.

Если в растворе есть ионы железа (III), образуется гидроксид железа (III) Fe(OH)3. Основание нерастворимо в воде и бурого цвета. (Гидроксид железа (II) Fe(OH)2. – также нерастворим, но серо-зеленого цвета). Бурый осадок указывает на присутствие в исходном растворе ионов железа (III).

FeCl3 + 3 NaOH = Fe(OH)3 ↓+ 3 NaCl

  1. Качественная реакция на ион железа (III) – реакция с желтой кровяной солью.

Желтая кровяная соль – это гексацианоферрат калия K4[Fe(CN)6]. (Для определения железа (II) используют красную кровяную соль K3[Fe(CN)6]). К порции раствора хлорида железа прильем раствор желтой кровяной соли. Синий осадок берлинской лазури* показывает на присутствие в исходном растворе ионов трехвалентного железа.

3 К4[Fe(CN)6 ] +4 FeCl3 = KFe[Fe(CN)6])↓ + 12 KCl

  1. Качественная реакция на ион железа (III) – реакция с роданидом калия.

Вначале разбавляем испытуемый раствор – иначе не увидим ожидаемой окраски. В присутствии иона железа (III) при добавлении роданида калия образуется вещество красного цвета. Это ‑ роданид железа (III). Роданид от греческого «родеос» — красный.

FeCl3 + 3 КCNS = Fe(CNS)3 + 3 KCl

Берлинская лазурь была получена случайно в начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении солей железа получался синим. При проверке поташа оказалось, что он был прокален с бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с высушенной кровью животных и железными опилками. Выщелачиванием такого сплава получали желтую кровяную соль. Сейчас берлинскую лазурь используют для получения печатной краски и подкрашивания полимеров.

Оборудование: колбы, пипетка.

Техника безопасности. Соблюдать правила обращения с растворами щелочей и растворами гексацианоферратов. Не допускать контакта растворов гексацианоферратов с концентрированными кислотами.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Получение гидроксида железа (II) и взаимодействие его с кислотами

Получим гидроксид железа (II) Fe(OH)2. Для этого воспользуемся реакцией растворимой соли железа (II) со щелочью: соединим сульфат железа (II) и гидроксид калия.

FeSO4 + 2KOH = Fe(OH)2↓ + K2SO4

Образуется серо-зеленый осадок гидроксида железа (II). Вспомним, что гидроксид железа (III) – бурый. По цвету получаемого осадка гидроксида различают соли железа (II) и железа (III). Как подействует кислота на серо-зеленый осадок гидроксида? Добавляем раствор соляной кислоты.

Fe(OH)2 + 2HCl = FeCl2 + 2H2O

Осадок гидроксида растворяется. Образуется раствор хлорида железа (II).

Оборудование: колба, пипетка.

Техника безопасности. Соблюдать правила обращения с растворами кислот и щелочей. Избегать попадания кислот и щелочей на кожу и слизистые оболочки.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Получение гидроксида железа (III) и взаимодействие его с кислотами

Получим гидроксид железа (III) Fe(OH)3 взаимодействием растворов хлорида железа (III) FeCl3 и гидроксида калия KOH. Это обычный способ получения нерастворимых оснований – реакция обмена растворимой соли и щелочи.

FeCl3 + 3KOH = Fe(OH)3 ↓+ 3KCl

Выпадает бурый осадок. Это гидроксид железа (III). Как гидроксид реагирует с кислотами? Добавим раствор соляной кислоты.

Fe(OH)3 + 3HCl = FeCl3 + 3H2O

Осадок гидроксида железа растворяется, образуется желтый раствор хлорида железа (III). Реакции обмена с кислотами могут превращать нерастворимые основания в растворимые соли.

Оборудование: колба, пипетка.

Техника безопасности.

Соблюдать правила обращения с растворами кислот и щелочей. Избегать попадания кислот и щелочей на кожу и слизистые оболочки.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Получение железа алюминотермией

Алюминий используется для получения некоторых металлов. Этот метод называется алюминотермией. Метод основан на том, что порошкообразный алюминий при воспламенении восстанавливает оксиды многих металлов. При этом образуется очень чистый, свободный от углерода металл. Получим железо способом алюминотермии. Смесь порошкообразного алюминия и оксидов железа называется термитом. Приготовим термит и подожжем его. При горении термита алюминий восстанавливает железо из его оксида.

Fe2O3 + 2 AI = AI2O3 + 2 Fe

После окончания реакции извлечем железо. Оно образуется на дне тигля в виде отдельных застывших капель. Металл притягивается к магниту.

Оборудование: тигель, ступка, металлическая чашка с песком, щипцы, пробирка, фильтровальная бумага, магнит.

Техника безопасности. Соблюдать правила пожарной безопасности и правила безопасности при работе с нагревательными приборами.

Постановка опыта и текст – к.п.н. Павел Беспалов.

Роль кислорода в процессе коррозии железа

Коррозия – это разрушение металлов под действием кислорода и воды. Попробуем установить зависимость степени коррозии железа от степени аэрации – то есть от доступа кислорода к поверхности металла. Опустим в пробирки железные гвозди и добавим воды: в первую пробирку – до половины, во вторую и в третью – до верха. В третью пробирку нальем слой растительного масла. Сплошной слой масла блокирует поступление кислорода в толщу воды. Посмотрим, что произошло с гвоздями через некоторое время. Больше всего ржавчины оказалось на гвозде из первой пробирки, этот гвоздь соприкасался и с водой, и с воздухом. Доступ кислорода к поверхности металла был свободным. На гвозде из второй пробирки коррозии меньше, так как железо взаимодействовало только с небольшим количеством растворенного в воде кислорода. Гвоздь из третьей пробирки почти не поржавел. Кислород не мог пройти через слой растительного масла, а без кислорода коррозия не развивается.

Оборудование: пробирки, штатив для пробирок.

Техника безопасности. Опыт не опасен.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Гидроксид натрия железо уравнение реакции

Сокращённое ионное уравнение соответствует взаимодействию

1) хлорида железа(II) и гидроксида калия

2) хлорида железа(III) и гидроксида бария

3) нитрата железа(III) и гидроксида меди(II)

4) оксида железа(III) и гидроксида натрия

Это реакция растворимой соли железа(III) со щелочью, значит, она соответствует взаимодействию

2) хлорида железа(III) и гидроксида бария

Почему 3 не подходит? Там ведь тоже щелочь + соль железа?

Гидроксид меди(II) — это не щелочь, он не растворим.

У нас получается два катиона железа и шесть анионов гидроксогруппы, на схеме же один катион железа и три аниона гидроксогруппы.

Это никак не гидроксид бария. Подходит гидроксид натрия:

Только так выходит как и на схеме: один катион железа и три аниона гидроксогруппы.

При написании сокращенного уравнения сокращаются не только одинаковые ионы, но и коэффициенты. Получаем:


источники:

http://www.yoursystemeducation.com/opyty-po-ximii-zhelezo/

http://chem-oge.sdamgia.ru/problem?id=1365