Гидролиз фосфида калия уравнение реакции

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6dfa94120e069770 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Необратимый гидролиз бинарных соединений.

Бинарные соединения – соединения, образованные двумя химическими элементами.

Бинарные соединения делят на ионные и ковалентные.

Ионными называют такие бинарные соединения, которые образованы атомами металла и неметалла.

Ковалентными называют бинарные соединения, образованные двумя неметаллами.

Общая информация по гидролизу бинарных соединений

Многие бинарные соединения способны разлагаться под действием воды. Такая реакция бинарных соединений с водой называется необратимым гидролизом.

Необратимый гидролиз практически всегда протекает с сохранением степеней окисления всех элементов. В результате взаимодействия бинарных соединения с водой всегда:

✓ элемент в отрицательной степени окисления переходит в состав водородного соединения;

✓ элемент в положительной степени окисления переходит в состав соответствующего гидроксида.

Напомним, что гидроксид неметалла – это ни что иное, как соответствующая кислородсодержащая кислота. Так, например, гидроксид серы (VI) — это серная кислота H2SO4.

Так, например, попробуем записать уравнение необратимого гидролиза фосфида кальция Ca3P2, опираясь на информацию, представленную выше.

В фосфиде кальция мы имеем кальций в степени окисления «+2» и фосфор в степени окисления «-3». Как уже было сказано, в результате взаимодействия с водой должно образоваться водородное соединение элемента в отрицательной степени окисления (т.е. фосфора) и соответствующий гидроксид элемента в положительной степени окисления.

Также сказано, что в результате реакции гидролиза практически всегда сохраняются степени окисления элементов.

Это значит, что в образующемся водородном соединении фосфор будет иметь ту же степень окисления, что и в исходном фосфиде, т.е. «-3», исходя из чего легко записать формулу самого водородного соединения – PH3 (газ фосфин).

В то же время, кальций, как элемент в положительной степени окисления, должен перейти в состав соответствующего гидроксида с сохранением степени окисления «+2», т.е. в Ca(OH)2.

Таким образом, без расстановки коэффициентов реакция будет описываться следующей схемой:

Расставив коэффициенты получаем уравнение:

Используя аналогичный алгоритм, запишем уравнение гидролиза пентахлорида фосфора PCl5.

В данном соединении мы имеем фосфор в степени окисления «+5» и хлор в степени окисления «-1».

Очевидно, что водородным соединением хлора с хлором в степени окисления «-1» будет HCl.

В свою очередь, поскольку элемент в положительной степени окисления относится к неметаллам, его гидроксидом будет кислородсодержащая кислота с фосфором в той же степени окисления «+5».

При условии, что вы знаете формулы всех неорганических кислот, несложно догадаться, что данным гидроксидом является фосфорная кислота H3PO4.

Само уравнение при этом после расстановки коэффициентов будет иметь вид:

Как видите, если вам дали формулу бинарного соединения и попросили записать уравнения его гидролиза, то ничего сложного в этом нет.

Какие ионные бинарные соединения способны вступать в реакцию необратимого гидролиза?

Для успешной сдачи ЕГЭ нужно запомнить, что из ионных бинарных соединений в реакцию необратимого гидролиза водой вступают:

1) нитриды щелочных металов (ЩМ), щелочноземельных металлов (ЩЗМ) и магния:

2) фосфиды ЩМ, ЩЗМ и магния:

3) силициды ЩМ, ЩЗМ и магния:

4) карбиды ЩМ, ЩЗМ и магния. Знать нужно формулы только двух карбидов — Al4C3 и CaC2 и, соответственно, уметь записывать уравнения их гидролиза:

5) сульфиды алюминия и хрома:

6) гидриды ЩМ, ЩЗМ, Mg, Al:

Гидролиз гидридов металлов – редкий пример окислительно-восстановительного гидролиза. Фактически, в данной реакции объединяются ионы водорода H + и анионы водорода H — , в следствие чего образуются нейтральные молекулы H2 с водородом в степени окисления, равной 0.

Какие ковалентные бинарные соединения вступают в реакцию гидролиза?

Из ковалентных бинарных соединений, способных вступать в реакцию необратимого гидролиза, нужно знать про:

1) галогениды фосфора III и V.

2) галогениды кремния:

Гидролиз бинарных соединений действием растворов кислот и щелочей

Помимо обычного гидролиза водой существует также вариант гидролиза, при котором бинарное соединение обрабатывают водным раствором щелочи или кислоты.

Как в таком случае записать уравнение гидролиза?

Для того, чтобы записать уравнение гидролиза бинарного соединения водным раствором щелочи или кислоты, нужно:

1) в первую очередь, представить, какие продукты образовались бы при обычном гидролизе водой.

Например, мы хотим записать уравнение щелочного гидролиза соединения PCl5 действием водного раствора KOH.

Тогда, согласно этому пункту, мы должны вспомнить какие продукты образуются при обычном гидролизе. В нашем случае это HCl и H3PO4

2) посмотреть на отношение этих продуктов к средообразователю (кислоте или щелочи) – реагируют они или нет. Если продукты обычного гидролиза реагируют со средообразователем, то запомнить продукты этого взаимодействия.

Возвращаясь к нашему случаю с PCl5, мы должны посмотреть на то, как относятся к щелочи продукты обычного гидролиза, т.е. HCl и H3PO4. Оба данных соединения в водном растворе являются кислотами, в связи с чем существовать в щелочной среде не могут. В частности, с гидроксидом калия они прореагируют, образуя соответственно соли KCl и K3PO4

3) в конечном уравнении в качестве продуктов записать то, что получается при взаимодействии со средообразователем. Воду при этом мы пока не пишем, вывод о том, писать ее или нет, делаем после попытки уравнивания реакции без нее.

Таким образом, следуя этому принципу, запишем:

Уже до начала расстановки коэффициентов очевидно, что есть необходимость в записи в качестве одного из продуктов реакции воды, поскольку в левой части присутствует водород, а в правой его нет.

Таким образом, суммарная схема реакции будет иметь вид:

А само уравнение после расстановки коэффициентов будет выглядеть так:

Следует отметить, что щелочной гидролиз ионных соединений чаще всего не отличается от обычного гидролиза действием воды, поскольку чаще всего ни один продукт обычного гидролиза с щелочью не взаимодействует.

Аналогично, можно сказать, что кислотный гидролиз ковалентных бинарных соединений не будет отличаться от водного.

В связи с этим имеет смысл более детально рассмотреть кислотный гидролиз ионных бинарных соединений и щелочной гидролиз ковалентных бинарных соединений.

Кислотный гидролиз ионных бинарных соединений

Со всеми перечисленными ионными бинарными соединениями, участвовавшими в реакциях обычного гидролиза водой, можно записать соответствующие уравнения их кислотного гидролиза. Возьмем в качестве примера водный раствор соляной кислоты:

Обратите внимание, что вместо водородного соединения в случае нитридов металлов образуется продукт его взаимодействия с соляной кислотой (NH3 + HCl = NH4Cl). Следует отметить, что нитриды металлов – единственный случай, когда при кислотном гидролизе ионного бинарного соединения не выделяется газообразное водородное соединение. Связано это с тем, что по сравнению с другими водородными соединениями неметаллов, только у аммиака основные свойства выражены в значительной степени.

Как можно заметить, кислотный гидролиз гидридов металлов также относится к окислительно-восстановительным реакциям. В результате этой реакции образуется простое вещество водород. Связано это с тем, что водород с кислотами не реагирует.

Щелочной гидролиз ковалентных бинарных соединений

Щелочному гидролизу среди ковалентных соединений подвержены все те же бинарные соединения, что и обычному гидролизу водой, то есть галогениды фосфора и кремния:

Щелочной гидролиз галогенидов фосфора III в ЕГЭ не встретится из-за специфических свойства фосфористой кислоты.

Тем не менее, для тех, кто хочет, ниже предоставляю пример такого рода уравнений с пояснением:

Поскольку фосфористая кислота является двухосновной, то несмотря на наличие трех атомов водорода, при ее реакции с щелочью на атомы металла способны заместиться только два атома водорода.

Гидролиз солей

Гидролиз (от греч. – вода и – разложение) – это разложение водой. Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц. Давая такое определение реакции гидролиза, мы подчеркиваем, что соли в растворе находятся в виде ионов и движущей силой реакции является образование малодиссоциирующих частиц (общее правило для многих реакций в растворах).

Всегда ли ионы способны образовывать с водой малодиссоциирующие частицы? Разбирая этот вопрос с учениками, отмечаем, что катионы сильного основания и анионы сильной кислоты таких частиц образовать не могут и, следовательно, в реакцию гидролиза не вступают.

Какие типы гидролиза возможны? Поскольку соль состоит из катиона и аниона, то возможны три типа гидролиза:

• гидролиз по катиону (в реакцию с водой вступает только катион);
• гидролиз по аниону (в реакцию с водой вступает только анион);
• совместный гидролиз (в реакцию с водой вступает и катион, и анион).

Гидролиз по катиону. Как катион может взаимодействовать с водой? Учитель сам должен решить, рассматривать ли ему этот вопрос в общем виде или (в менее сильном классе) на конкретном примере. Отмечаем, что катион – это положительно заряженная частица, а молекула воды полярна, условно можно представить ее состоящей из положительно заряженного атома водорода и отрицательно заряженной гидроксильной группы. Какую же часть молекулы воды оторвет и присоединит к себе катион? Ученики с удовольствием отвечают: «Гидроксильную группу!» Ответ подтверждаем записью уравнения, отмечая обратимость реакции:

M n+ + H–OH MOH (n–1)+ + H + .

Написав формулу образовавшейся частицы, тут же обсуждаем, что это за частица, будет ли она иметь заряд и какой, приходим к выводу, что, как правило, это гидроксокатион. А что останется от молекулы воды? Какую реакцию водного раствора обусловливает избыток этих частиц? Какова будет реакция индикатора? А теперь проверим нашу гипотезу (следует демонстрация опыта).

После этого школьники могут самостоятельно сделать вывод: гидролиз по катиону приводит к образованию гидроксокатионов и кислой среды раствора.

Отмечаем, что иногда (при n = 1) вместо гидроксокатионов получаем молекулы слабого основания. А может ли гидроксокатион вступить в реакцию со следующей молекулой воды? Сообщаем, что это будет вторая ступень гидролиза, что каждая следующая ступень протекает в тысячи раз слабее, чем предыдущая, что даже первая ступень протекает обычно на доли процента. Поэтому, как правило, рассматривается только первая ступень гидролиза.

Гидролиз по аниону разбираем аналогично, записывая уравнение:

An n– + H–OH HAn (n–1)– + OH – .

Подводим учеников к выводу: гидролиз по аниону приводит к образованию гидроанионов и щелочной среды раствора.

Совместный гидролиз. Из самого названия следует, что в этом случае в растворе протекают две выше рассмотренные реакции. Предлагаем школьникам проанализировать их и сделать вывод о реакции среды. Опровергаем (можно экспериментом) представление о том, что среда будет нейтральной. Одинаковое число ионов водорода и гидроксид-ионов существует только на бумаге. На самом деле здесь протекают две независимые обратимые реакции, и каких ионов в растворе окажется больше – зависит от степени протекания каждой реакции. А это, в свою очередь, зависит от того, что слабее – кислота или основание. Если слабее основание, то в большей степени будет протекать гидролиз по катиону и среда раствора будет кислой. Если слабее кислота – наоборот. Как исключение возможен случай, когда среда будет почти нейтральной, но это только исключение.

Одновременно обращаем внимание учащихся на то, что связывание гидроксид-ионов и ионов водорода в воду приводит к уменьшению их концентрации в растворе. Предлагаем вспомнить принцип Ле Шателье и подумать, как это повлияет на равновесие. Подводим их к выводу, что при совместном гидролизе степень его протекания будет значительно выше и в отдельных случаях это может привести к полному гидролизу.

Полный гидролиз. Для полного протекания гидролиза нужно, чтобы соль была образована очень слабой кислотой и очень слабым основанием. Кроме того, желательно, чтобы один из продуктов гидролиза уходил из сферы реакции в виде газа. (Малорастворимые вещества, остающиеся в контакте с раствором, вообще говоря, не уходят из сферы реакции, поскольку все равно в какой-то степени растворимы.) Поэтому полному гидролизу подвергаются обычно соли газообразных или неустойчивых кислот: сероводородной, угольной, отчасти сернистой. К ним примыкают вещества, которые в обычном понимании уже не являются солями: нитриды, фосфиды, карбиды, ацетилениды, бориды. Полностью гидролизуются также алкоголяты.

Если вернуться к обычным солям, то полностью гидролизующиеся соли (карбонаты, сульфиды алюминия, хрома(III), железа(III)) нельзя получить реакциями обмена в водных растворах. Вместо ожидаемых продуктов в результате реакции мы получим продукты гидролиза. Гидролиз осложняет протекание многих других реакций обмена. Так, при взаимодействии карбоната натрия с сульфатом меди в осадок обычно выпадает основный карбонат меди (CuOH)2CO3.

В таблице растворимости для полностью гидролизующихся солей стоит прочерк. Однако прочерк может стоять по другим причинам: вещество не изучено, разлагается в ходе окислительно-восстановительной реакции и т.п. Некоторые прочерки, иногда встречающиеся в таблице растворимости, вызывают удивление. Так, сульфид бария хорошо известен и растворим, как и сульфиды других щелочно-земельных металлов. Гидролиз этих солей протекает только по аниону.

Алгоритм написания уравнений гидролиза

Когда школьники поняли суть реакции гидролиза, даем (а лучше составляем вместе с ними) алгоритм написания уравнений гидролиза. Рассмотрим его на конкретных примерах.

Пример 1. Гидролиз сульфата меди(II)

1. Определяем тип гидролиза. На этом этапе школьники могут написать уравнение диссоциации соли:

CuSO4 = Cu 2+ + .

Можно дать им «правило цепочки»: цепочка рвется по слабому звену, гидролиз идет по иону слабого электролита.

Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты. Идет гидролиз по катиону.

2. Пишем ионное уравнение гидролиза, определяем среду:

Cu 2+ + H–OH CuOH + + H + .

Образуется катион гидроксомеди(II) и ион водорода, среда – кислая.

3. Составляем молекулярное уравнение. Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц, находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH)2SO4, но для этого наше ионное уравнение мы должны мысленно умножить на два. Получаем:

2CuSO4 + 2H2O (CuOH)2SO4 + H2SO4.

Обращаем внимание, что продукт реакции относится к группе основных солей. Названия основных солей, как и названия средних, следует составлять из названий аниона и катиона, в данном случае соль назовем «сульфат гидроксомеди(II)». (Не надо приставки «ди», не говорим же мы «сульфат динатрия».) Назвать эту соль «гидроксосульфат меди», на наш взгляд, значит нарушить всю логику номенклатуры солей. Разве есть в растворе или в узлах кристаллической решетки частица «гидроксосульфат»? Нет! А катион гидроксомеди есть. В дальнейшем этот подход распространяется на номенклатуру комплексных солей.

Пример 2. Гидролиз ортофосфата рубидия

1. Определяем тип гидролиза:

Рубидий – щелочной металл, его гидроксид – сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, – слабая кислота. Идет гидролиз по аниону.

2. Пишем ионное уравнение гидролиза, определяем среду:

+ H–OH + OH – .

Продукты – гидрофосфат- и гидроксид-ионы, среда – щелочная.

3. Составляем молекулярное уравнение:

Rb3PO4 + H2O Rb2HPO4 + RbOH.

Получили кислую соль – гидрофосфат рубидия.

Пример 3. Гидролиз ацетата алюминия

1. Определяем тип гидролиза:

Соль образована катионом слабого основания и анионами слабой кислоты. Идет совместный гидролиз.

2. Пишем ионные уравнения гидролиза, определяем среду:

Al 3+ + H–OH AlOH 2+ + H + ,

CH3COO – + H–OH CH3COOH + OH – .

Учитывая, что гидроксид алюминия очень слабое основание, предположим, что гидролиз по катиону будет протекать в большей степени, чем по аниону. Следовательно, в растворе будет избыток ионов водорода, и среда будет кислая.

Не стоит пытаться составлять здесь суммарное уравнение реакции. Обе реакции обратимы, никак друг с другом не связаны, и такое суммирование бессмысленно.

3. Составляем молекулярное уравнение:

Al(CH3COO)3 + H2O AlOH(CH3COO)2 + CH3COOH.

Это тоже формальное упражнение, для тренировки в составлении формул солей и их номенклатуре. Полученную соль назовем ацетат гидроксоалюминия.

Факторы, влияющие на степень гидролиза

Поскольку гидролиз – обратимая реакция, то на состояние равновесия гидролиза влияют температура, концентрации участников реакции, добавки посторонних веществ. Если в реакции не участвуют газообразные вещества, то давление практически не влияет. Исключается из рассмотрения вода, т.к. ее концентрация в водных растворах практически постоянна
(

55 моль/л). Так, для примеров 1 и 2 выражения констант равновесия (констант гидролиза) имеют вид:

Температура. Поскольку реакция гидролиза эндотермическая, повышение температуры смещает равновесие в системе вправо, степень гидролиза возрастает.

Концентрация продуктов гидролиза. В соответствии с принципом Ле Шателье повышение концентрации ионов водорода для реакции, рассмотренной в примере 1, приведет к смещению равновесия влево, т.е. степень гидролиза будет уменьшаться. Также будет влиять увеличение концентрации гидроксид-ионов для реакции, рассмотренной в примере 2.

Концентрация соли. Рассмотрение этого фактора приводит к парадоксальному выводу: равновесие в системе смещается вправо (в соответствии с принципом Ле Шателье), но степень гидролиза уменьшается.

Понять это помогает константа равновесия. При добавлении соли, т.е. фосфат-ионов в примере 2, равновесие будет смещаться вправо, концентрации гидрофосфат- и гидроксид-ионов будут возрастать. Но из рассмотрения константы равновесия этой реакции ясно, что, для того чтобы увеличить концентрацию гидроксид-ионов вдвое, нам надо концентрацию фосфат-ионов увеличить в 4 раза! Ведь значение константы должно быть неизменным. А это значит, что степень гидролиза, под которой можно понимать отношение [OH – ]/[], уменьшится вдвое.

Разбавление. Этот фактор означает одновременное уменьшение концентрации всех частиц в растворе (не считая воды). В соответствии с принципом Ле Шателье такое воздействие приводит к смещению равновесия в сторону реакции, идущей с увеличением числа частиц. Реакция гидролиза протекает (без учета воды!) с увеличением числа частиц. Следовательно, при разбавлении равновесие смещается в сторону протекания этой реакции, т.е. вправо, степень гидролиза возрастает. К этому же выводу приведет рассмотрение константы гидролиза.

Добавки посторонних веществ могут влиять на положение равновесия в том случае, когда эти вещества реагируют с одним из участников реакции. Так, при добавлении к раствору сульфата меди в примере 1 раствора гидроксида натрия содержащиеся в нем гидроксид-ионы будут взаимодействовать с ионами водорода. В результате их концентрация уменьшится, и по принципу Ле Шателье равновесие в системе сместится вправо, степень гидролиза возрастет. Если к тому же раствору добавить раствор сульфида натрия, то равновесие сместится не вправо, как можно было бы ожидать (взаимное усиление гидролиза), а влево из-за связывания ионов меди в практически нерастворимый сульфид меди.

Практическое применение

На практике с гидролизом учителю приходится сталкиваться, например, при приготовлении растворов гидролизующихся солей, в частности ацетата свинца. Обычная методика: в колбу наливаем воду, засыпаем соль, взбалтываем. Остается белый осадок. Добавляем еще воды, взбалтываем – осадок не исчезает. Добавляем из чайника горячей воды – осадка кажется еще больше…

Причина в том, что одновременно с растворением идет гидролиз соли, и белый осадок, который мы видим, – это уже продукты гидролиза – малорастворимые основные соли. Все наши дальнейшие действия – разбавление, нагревание – только усиливают степень гидролиза.

Как же подавить гидролиз? Не нагревать, не готовить слишком разбавленных растворов и, поскольку главным образом мешает гидролиз по катиону, добавить кислоты, лучше соответствующей, т.е. уксусной.

В других случаях степень гидролиза желательно увеличить. Например, чтобы сделать щелочной моющий раствор бельевой соды более активным, мы его нагреваем – степень гидролиза карбоната натрия при этом возрастает.

Важную роль играет гидролиз в процессе обезжелезивания воды методом аэрации. При насыщении воды кислородом содержащийся в ней гидрокарбонат железа(II) окисляется до соли железа(III), значительно сильнее подвергающийся гидролизу. В результате происходит полный гидролиз, и железо отделяется в виде осадка гидроксида железа(III).

На этом же основано применение солей алюминия в качестве коагулянтов в процессах очистки воды. Добавляемые в воду соли алюминия в присутствии гидрокарбонат-ионов полностью гидролизуются, и объемистый гидроксид алюминия коагулирует, увлекая с собой в осадок различные примеси.

Гидролиз в заданиях ЕГЭ по химии

ВОПРОС А26 (2003 г.). Фенолфталеин можно использовать для обнаружения в водном растворе соли:

1) ацетата алюминия; 2) нитрата калия; 3) сульфата алюминия; 4) силиката натрия.

Фенолфталеин – индикатор на щелочную среду, в которой он принимает малиновую окраску (возможно, для многих камнем преткновения в этом вопросе стало незнание окрасок индикаторов: фенолфталеина, лакмуса, метилоранжа). В растворе соли щелочная среда может возникнуть при гидролизе по аниону.

1) ацетат алюминия рассмотрен выше, идет совместный гидролиз, среда получается слабокислая;

2) нитрат калия образован сильными кислотой и основанием, гидролиз не идет, среда нейтральная;

3) сульфат алюминия образован сильной кислотой и слабым основанием, гидролиз идет по катиону, среда получается кислая;

4) силикат натрия образован слабой кислотой и сильным основанием, гидролиз идет по аниону, среда получается щелочная:

+ H2O H + OH – .

Ответ. 4.

ВОПРОС A29 (демонстрационный вариант, 2005 г.). Среда раствора карбоната калия:

1) щелочная; 2) кислая; 3) нейтральная; 4) слабокислая.

Рассмотрение аналогичное.

Ответ. 1.

ВОПРОС B5 (демонстрационный вариант, 2005 г.). Установите соответствие между формулой соли и ионным уравнением гидролиза этой соли.

Формула соли:CCCCCИонное уравнение:
1) CuSO4;а) CH3COO – + H2O CH3COOH + OH – ;
2) K2CO3;б) + H2O NH3•H2O + H + ;
3) CH3COONa;в) Сu 2+ + H2O Cu(OH) + + H + ;
4) (NH4)2SO4.г) + H2O H + OH – ;
д) Сu 2+ + 2H2O Cu(OH)2 +2H + .

Пример не слишком удачного вопроса. С одной стороны, трудно на него не ответить, исходя из простого сопоставления формул в левой и правой колонках (про гидролиз можно при этом ничего не знать). С другой стороны, оба ионных уравнения для катиона меди можно считать правильными, но уравнение д) мы бы назвали суммарным для двух стадий гидролиза и отметили бы, что степень протекания реакции по нему чрезвычайно мала. Только на основе этого мы выберем уравнение в).

Ответ. 1 – в; 2 – г; 3 – а; 4 – б.

ВОПРОС В3 (2004 г.). Установите соответствие между условиями и состоянием химического равновесия процесса гидролиза солей.

Условия смещения равновесия:

1) нагревание раствора;
2) добавление продуктов гидролиза;
3) охлаждение раствора;
4) разбавление раствора.

а) смещается влево;
б) смещается вправо;
в) не смещается.

Используем установленные выше закономерности.

Ответ. 1 – б; 2 – а; 3 – а; 4 – б.

ВОПРОС С1 (2004 г.). Как скажется на состоянии химического равновесия в системе

Zn 2+ + H2O ZnOH + + H + – Q:

2) добавление KOH;

3) нагревание раствора?

При ответе на этот вопрос надо учитывать, что добавляемые вещества – электролиты. Поставляемые ими ионы могут как непосредственно влиять на равновесие, так и взаимодействовать с одним из ионов, участвующих в обратимой реакции:

H2SO4 = 2H + + ,

повышение концентрации ионов водорода приводит по принципу Ле Шателье к смещению равновесия в системе влево;

2) добавление KOH:

гидроксид-ионы связывают ионы водорода в малодиссоциирующее вещество – воду
(H + + OH – = H2O); снижение концентрации ионов водорода приводит по принципу Ле Шателье к смещению равновесия в системе вправо;

3) нагревание раствора по принципу Ле Шателье приводит к смещению равновесия в сторону протекания эндотермической реакции, т.е. вправо.

Ответ на все три элемента вопроса оценивался в 3 балла.

Попробуйте самостоятельно ответить на следующие вопросы.

ВОПРОС А26 (2003 г.). Между собой водные растворы сульфата и фосфата натрия можно различить с помощью:

1) гидроксида натрия;
2) серной кислоты;
3) фенолфталеина;
4) фосфорной кислоты.

ВОПРОС В3 (2003 г.). Установите соответствие между названиями солей и средой их растворов.

1) нитрит калия;
2) сульфат железа(II);
3) карбонат калия;
4) хлорид алюминия.

а) кислая;
б) нейтральная;
в) щелочная.

ВОПРОС В3 (2004 г.). Установите соответствие между формулой соли и способностью этой соли к гидролизу.

Способность к гидролизу:

а) гидролиз по катиону;
б) гидролиз по аниону;
в) гидролиз по катиону и аниону;
г) гидролизу не подвергается.

ВОПРОС С1 (2003 г.). Сульфид-ион – типичный протолит. Напишите уравнение протолиза (гидролиза) сульфид-иона в водном растворе по первой ступени. Укажите среду этого раствора. Как скажется добавление гидроксида натрия на степень протолиза сульфид-ионов?

Подводя итог, отметим, что в рамках школьного курса в реакциях гидролиза солей нет ничего чрезмерно сложного для понимания школьника. Здесь используются общие правила написания ионных уравнений, общие представления о смещении химического равновесия, общий подход к номенклатуре солей, краткий и удобный алгоритм написания уравнений. Хочется надеяться, что изложенный материал поможет вам и вашим ученикам.


источники:

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/neobratimyj-gidroliz-binarnyh-soedinenij

http://him.1sept.ru/article.php?ID=200501003