Гипотеза и уравнение де бройля

Волновые свойства микрочастиц. Дифракция электронов

1923 год ознаменовался событием, значимо ускорившим развитие квантовой физики. Французским физиком Л. де Бройлем была предложена гипотеза, предполагающая универсальность корпускулярно-волнового дуализма. В своей концепции Де Бройль сформулировал утверждение о том, что, помимо фотонов и электроны, а также прочие частицы материи имеют как корпускулярные, так и волновые свойства.

Описание гипотезы де Бройля

Идеи де Бройля содержали мысль о том, что любой микрообъект имеет, с одной стороны, корпускулярные характеристики – энергия E и импульс p , а с другой стороны, волновые характеристики – частота v и длина волны λ . При этом количественное соотношение корпускулярных и волновых характеристик аналогично тому же для фотона:

E = h v , p = h v c = h λ .

Как уже было сказано выше, в гипотезе французского физика шла речь о всех видах микрочастиц, соответственно и указанное выше соотношение применимо для любых из них, в том числе, и для обладающих массой m . Любая частица, обладающая импульсом, была сопоставлена с волновым процессом с длиной волны λ = h p .

Для частиц, имеющих массу: λ = h p = h 1 — v 2 / c 2 m v .

В нерелятивистском приближении ( υ c )

Основой идей де Бройля стали размышления о симметрии свойств материи, и в то время, увы, гипотеза не получила опытного подтверждения. Однако, она стала мощнейшим катализатором развития новых идей о природе материальных объектов. На протяжении последующих нескольких лет выдающиеся умы XX века (физики В. Гейзенберг, Э. Шредингер, П. Дирак, Н. Бор и др.) создавали теоретические основы новой науки, названной квантовой механикой.

Дифракция электронов

Впервые гипотеза де Бройля была экспериментально подтверждена в 1927 году, когда американские физики К. Девиссон и Л. Джермер выяснили, что пучок электронов, рассеивающийся на кристалле никеля, дает ясную дифракционную картину, похожую на возникающую тогда, когда на кристалле рассеивается коротковолновое рентгеновское излучение. В исследованиях физиков кристалл служил естественной дифракционной решеткой. По тому, какое положение имели дифракционные максимумы, выяснилась длина волны электронного пучка, и она полностью соответствовала той, что вычислялась по формуле де Бройля.

В 1928 году физик из Англии Г. Томсон (являющийся сыном Дж. Томсона, который открыл за 30 лет до этого электрон) вновь подтвердил гипотезу де Бройля. Эксперименты Томсона позволили наблюдать дифракционную картину, которая возникала, когда пучок электронов проходил через тонкую поликристаллическую фольгу из золота.

Рисунок 5 . 4 . 1 . Упрощенная схема опытов Г. Томсона по дифракции электронов. K – накаливаемый катод, A – анод, Ф – фольга из золота.

За фольгой установлена фотопластинка, на которой наблюдались явные концентрические светлые и темные кольца. Радиусы этих колец варьировались в зависимости от скорости электронов (т. е. длины волны) согласно де Бройлю (рис. 5 . 4 . 2 ).

Рисунок 5 . 4 . 2 . Картина дифракции электронов на поликристаллическом образце при длительной экспозиции ( a ) и при короткой экспозиции ( b ) .

В случае ( b ) видны точки попадания отдельных электронов на фотопластинку.

В последующие годы эксперимент Г. Томсона многократно повторяли и результат был неизменен даже в тех случаях, когда поток электронов был столь слабым, что через прибор единовременно проходила только одна частица (например, опыт В. А. Фабриканта в 1948 г.). Так была доказана идея, что волновые свойства характерны как для большой совокупности электронов, так и для каждого электрона в отдельности.

В последующем явления дифракции обнаружились и для нейтронов, протонов, атомных и молекулярных пучков. Доказанное экспериментально наличие волновых свойств различных видов микрочастиц позволило сделать вывод об универсальности этого явления в природе, являющегося общим свойством материи. Если продолжать данное рассуждение, волновыми свойствами должны обладать и макроскопические тела. Но из-за больших показателей массы, присущих макроскопическим телам, их волновые свойства затруднительно доказать при помощи экспериментов.

К примеру, пылинка массой 10 – 9 г , которая движется со скоростью 0 , 5 м / с , обладает волной де Бройля с длиной примерно 10 – 21 м, т. е. меньше размера атома на 11 порядков. Подобная длина волны находится за границами области, которая доступна для наблюдения.

Приведенный пример демонстрирует, что для макроскопических тел доступно лишь проявление корпускулярных свойств.

Приведем еще пример.

U = 100 В , длину волны де Бройля для него мы можем определить по формуле: λ = h 2 m e U

Приведенный пример — нерелятивистский случай, поскольку разница между кинетической энергией электрона e U = 100 э В и энергией покоя m c 2 ≈ 0 , 5 М э В достаточно значима (кинетическая энергия значимо меньше энергии покоя).

В результате расчета получим: λ ≈ 0 , 1 н м , т. е. полученная длина волны примерно соответствует размерам атомов. Для таких электронов кристалл служит отличной решеткой для дифракции. Как раз подобные малоэнергичные электроны показывают четкую дифракционную картину при проведении экспериментов по дифракции электронов. Вместе с этим электрон с такими характеристиками, испытавший дифракционное рассеяние на кристалле как волна, осуществляет взаимодействие с атомами фотопластинки в качестве частицы и вызывает почернение фотоэмульсии в некоторой точке (рис. 5 . 4 . 2 ).

Резюмируя, еще раз отметим, что гипотеза де Бройля о корпускулярно-волновом дуализме, доказанная экспериментально, глобально поменяла представления о том, какими свойствами обладают микрообъекты.

Все микрообъекты обладают и волновыми, и корпускулярными свойствами, но при этом не являются ни волной, ни частицей в стандартном представлении.

Одновременного проявления различных свойств микрообъектов не происходит: они являются дополнением друг друга, и лишь их совокупность характеризует микрообъект в целом.

Эти заключения были сформулированы датским физиком Н.Бором и получили название принципа дополнительности. Упрощенно возможно говорить о том, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.

Если смотреть на вопрос с позиции волновой теории: существует соответствие максимумов в дифракционной картине электронов и максимальной интенсивности волн де Бройля. Наибольшее количество электронов находится в областях максимумов, зарегистрированных на фотопластинке. Однако схема попадания электронов в различные места на фотопластинке не индивидуальна. В принципе нет возможности заранее предположить, куда попадет очередной электрон после рассеяния; допустима только некоторая вероятность попадания электрона в то или иное место. Следовательно, описать состояние микрообъекта и его поведение возможно только, опираясь на понятие вероятности.

Факт, что необходимо использовать вероятностный подход, описывая микрообъекты, является важной отличительной чертой квантовой теории. Квантовая механика для характеристики состояний микрообъектов включает в себя понятие волновой функции Ψ (пси-функции).

Квадрат модуля волновой функции | Ψ | 2 пропорционален вероятности нахождения микрочастицы в единичном объеме пространства.

Определенный вид волновой функции задается внешними условиями, в которых находится микрочастица. Математический инструментарий квантовой механики дает возможность определять волновую функцию частицы, которая находится в заданных силовых полях. Безграничная монохроматическая волна де Бройля является волновой функцией свободной частицы, на которую не действуют никакие силовые поля.

Максимально четко явление дифракции наблюдается тогда, когда размерность препятствия, на котором происходит дифракция волн, соизмерима с длиной волны. Подобное поведение характерно для волн любой физической природы и, в частности, электронных волн. Для волн де Бройля естественная дифракционная решетка — это упорядоченная структура кристалла с пространственным периодом порядка размеров атома (приблизительно 0 , 1 н м ). Нет возможности создать искусственным образом препятствие указанного размера (к примеру, отверстие в непрозрачном экране), однако, чтобы уяснить природу волн де Бройля, возможно проводить, так сказать, мысленные эксперименты.

Для примера разберем дифракцию электронов на одиночной щели шириной D (рис. 5 . 4 . 3 )

Рисунок 5 . 4 . 3 . Дифракция электронов на щели. График справа – распределение электронов на фотопластинке.

Из общей массы электронов, проходящих через щель, свыше 85 % окажутся в центральном дифракционном максимуме. Угловая полуширина θ 1 этого максимума определится из условия

Указанная формула — часть волновой теории. Если рассуждать, опираясь на корпускулярные свойства, возможно сказать, что, когда электрон проходит через щель, он получает дополнительный импульс в перпендикулярном направлении. Можем пренебречь оставшимися 15 % электронов, попадающих на фотопластинку за пределами центрального максимума, и тогда будем считать, что максимальное значение p y поперечного импульса равно:

p у = p · sin θ 1 = h λ · sin θ 1

В этой формуле p является модулем полного импульса электрона, равным (по гипотезе де Бройля) h λ . Величина p , когда электрон проходит через щель, неизменна, поскольку неизменной является длина волны λ . Указанные выражения дают возможность записать следующее соотношение:

Для задач квантовой механики это несложное с виду соотношение, служащее следствием волновых свойств микрочастицы, имеет глубочайший смысл. Электроны проходят через щель, что есть эксперимент, где y – координата электрона – определяется с точностью Δ y = D .

Величина Δ y носит название неопределенности измерения координаты.

Вместе с тем, точность определения y – составляющей импульса электрона в момент прохождения через щель – равна p y или даже больше, учитывая побочные максимумы дифракционной картины.

Эта величина носит название неопределенности проекции импульса и обозначается как Δ p y .

Показатели Δ y и Δ p y связаны соотношением:

и оно названо соотношением неопределенностей Гейзенбурга.

Величины Δ y и Δ p y следует уяснить в том смысле, что микрочастицы не обладают одновременно точным значением координаты и соответствующей проекцией импульса. Соотношение неопределенностей не имеет отношения к несовершенству используемых приборов, чтобы одновременно измерить координаты и импульс микрочастицы. Соотношение Гейзенбурга есть проявление той самой дуальной корпускулярно-волновой природы материи микрообъектов. Соотношение дает возможность дать оценку тому, насколько применимы к микрочастицам постулаты классической механики. Оно также демонстрирует, что к микрообъектам невозможно применить понятие траектории в классическом понимании, поскольку характеристикой движения по траектории в любой момент времени являются определенные значения координат и скорости. В принципе нет возможности указать траекторию, по которой в некотором мысленном эксперименте двигался некий определенный электрон после прохождения щели до фотопластинки.

И все же определенные условия создают ситуацию, когда соотношение неопределенностей не является противоречием классическому описанию движения тел, в частности, микрочастиц.

К примеру, электронный пучок в кинескопе телевизора при вылете из электронной пушки имеет диаметр D около 10 – 3 с м . В телевизоре ускоряющее напряжение U ≈ 15 к В .

Нетрудно рассчитать импульс электрона: p = 2 m e U ≈ 6 , 6 · 10 — 23 к г · м / с

Данный импульс имеет направление вдоль оси трубки. Из соотношения неопределенностей вытекает, что электронам при формировании пучка сообщается неконтролируемый импульс Δ p , являющийся перпендикуляром к оси пучка: Δ p ≈ h D ≈ 6 , 6 · 10 – 29 к г · м / с .

Допустим, до экрана кинескопа электроны проходят расстояние L ≈ 0 , 5 м . В таком случае размытие Δ l пятна на экране, заданное волновыми свойствами электрона, составит:

∆ l ≈ ∆ p p L ≈ 5 · 10 — 5 с м

Так как Δ l D , возможно рассмотреть движение электронов в кинескопе телевизора при помощи основ классической механики.

Так, используя соотношение неопределенностей, есть возможность выяснять, насколько справедливы законы классической физики в отдельных случаях.

Проведем еще мысленный эксперимент: это будет дифракция электронного пучка на двух щелях
(рис. 5 . 4 . 4 ).

Структура эксперимента аналогична структуре оптического интерференционного опыта Юнга.

Рисунок 5 . 4 . 4 . Дифракция электронов на двух щелях.

Проанализировав данный эксперимент, мы можем отметить некоторые трудности логических умозаключений в квантовой теории. Собственно, то же затруднение имеет место быть при попытке объяснить оптический опыт Юнга на основе концепции фотонов.

Если в ходе нашего эксперимента закрыть одну из щелей, мы будем наблюдать исчезновение интерференционных полос, а на фотопластинке будет зарегистрировано распределение электронов, продифрагировавших на одной щели (рис. 5 . 4 . 3 ), т.е. долетая до фотопластинки, электроны проходят через одну щель. Открыв обе щели, мы вновь наблюдаем интерференционные полосы, и становится закономерным вопрос: так сквозь какую из щелей проходит каждый электрон?

Конечно, довольно затруднительно представить с точки зрения присущей нашему мышлению логике, что единственным ответом на указанный выше вопрос является факт, что электрон проходит через обе щели. Нашему мышлению свойственно представлять поток микрообъектов в виде направленного движения, например, маленьких шариков и соответственно описывать это движение, опираясь на законы классической физики. Однако для всех микрочастиц характерны как корпускулярные, так и волновые свойства. Нам легко представится, как электромагнитная световая волна пройдёт сквозь две щели в оптическом эксперименте Юнга, поскольку волна не имеет локализации в пространстве. Но при рассмотрении концепции фотонов приходится принять, что и каждый фотон не имеет локализации. Мы не имеем возможности указать, через какую щель прошел фотон, как и не имеем возможности отследить точную траекторию полета фотона до фотопластинки с указанием точной точки его попадания. Опыты демонстрируют такую картину, что, даже когда фотоны проходят сквозь интерферометр поштучно, интерференционная картина после прохождения многих независимых фотонов все равно имеет место быть. Таким образом, квантовая физика формулирует вывод: фотон интерферирует сам с собой.

Сказанное выше имеет отношение и к эксперименту по дифракции электронов на двух щелях. Все известные экспериментальные факты в своей совокупности могут быть объяснены, если признать, что волна по де Бройлю каждого конкретного электрона проходит одномоментно сквозь обе щели, и, как результат, имеет место явление интерференции.

Поштучный поток электронов также дает интерференцию при длительной экспозиции, т. е. электрон, как и фотон, интерферирует сам с собой.

В заключение приведем иллюстрации:

Рисунок 5 . 4 . 5 . Модель волновых свойств частиц.

Рисунок 5 . 4 . 6 . Модель дифракции электронов.

Корпускулярно-волновой дуализм

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: гипотеза де Бройля о волновых свойствах частиц, корпускулярно-волновой дуализм, дифракция электронов.

Корпускулярно-волновой дуализм (слово дуализм означает двойственность) — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

С первым проявлением этого принципа мы столкнулись в предыдущем листке, когда говорили о двойственной, корпускулярно-волновой природе света. В явлениях интерференции и дифракции свет демонстрирует свою волновую природу. В явлении фотоэффекта свет выступает как дискретный поток частиц — фотонов.

Является ли свет каким-то особым объектом нашего мира, таким, что подобный дуализм присущ только ему? Или, быть может, корпускулярно-волновой дуализм — это свойство вообще всех материальных объектов, просто впервые обнаружен он был для света?

Гипотеза де Бройля

Идея об универсальной двойственности корпускулярных и волновых свойств всех объектов природы была впервые высказана Луи де Бройлем (в 1924году) в качестве гипотезы о волновых свойствах частиц.

Итак, мы знаем, что свету с частотой и длиной волны соответствуют частицы — фотоны, обладающие энергией и импульсом . Де Бройль, в сущности, постулировал обратное.

Гипотеза де Бройля. Движению каждой частицы соответствует распространение некоторой волны. Частота и длина этой волны определяются энергией и импульсом частицы:

Точно так же, любой волне с частотой и длиной волны отвечают частицы с энергией и импульсом .

Чтобы лучше осмыслить гипотезу де Бройля, давайте обсудим дуализм «волна–частица» на примере электромагнитного излучения.

В случае электромагнитных волн мы имеем следующую закономерность. По мере увеличения длины волны всё легче наблюдать волновые свойства излучения и всё труднее — корпускулярные. И наоборот, чем меньше длина волны, тем ярче выражены корпускулярные свойства излучения и тем труднее наблюдать его волновые свойства. Изменение соотношения корпускулярных и волновых свойств хорошо прослеживается при движении по известной вам шкале электромагнитных волн.

Радиоволны.Длины волн здесь настолько велики, что корпускулярные свойства излучения практически не проявляются. Волновые свойства в этом диапазоне абсолютно доминируют.

Длины волн могут составлять несколько метров или даже километров, так что волновая природа проявляется «сама собой» — радиоволны в процессе дифракции запросто огибают дома или горы. Излучение радиоволн и их взаимодействие с материальными объектами отлично описывается в рамках классической электродинамики.

Видимый свет и ультрафиолет. Это своего рода «переходная область»: в оптике мы можем наблюдать как волновые свойства света, так и корпускулярные.

Однако в обоих случаях надо постараться. Так, длины волн видимого света много меньше размеров окружающих нас тел, поэтому в опытах по интерференции или дифракции света нужно создавать специальные условия (малость щелей или отверстий, удалённость экрана). В свою очередь, термин «красная граница фотоэффекта» также подчёркивает пограничность данного диапазона: фотоэффект начинается лишь при переходе через красную границу.

Рентгеновское и гамма-излучение. Длины волн очень малы, и наблюдать волновые свойства излучения весьма затруднительно. Так, верхняя граница длин волн рентгеновского излучения составляет нм; это лишь на два порядка превышает размер атома. Ясно, что дифракцию на «обычных» препятствиях при такой длине волны наблюдать невозможно.

Однако в рентгеновский диапазон входят длины волн порядка размера атома и межатомных расстояний в кристалле ( нм). Поэтому дифракция рентгеновских лучей наблюдается на «естественных» дифракционных решётках — кристаллических решётках твёрдых тел (эта идея была высказана немецким физиком Лауэ в 1912 году).

Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц.

Рассуждая по аналогии с электромагнитными волнами, можно заключить, что и частица будет проявлять волновые свойства тем лучше, чем больше её длина волны де Бройля (в масштабах данной ситуации).

Так, мы совсем не наблюдаем волновых свойств у окружающих нас тел. (Видели вы, например, интерференцию движущихся автомобилей?) А почему? Давайте посчитаем длину дебройлевской волны объекта массой кг, движущегося со скоростью м/с:

Это на порядков меньше размера атома. Воображение отказывается представить себе столь малую величину. Разумеется, никакого волнового поведения у нашего объекта при таких условиях не обнаруживается — он стопроцентно ведёт себя как «частица», то есть как материальная точка классической механики.

Дифракция электронов

Совсем другое дело — электрон. Масса электрона равна кг, и столь малое значение массы (а стало быть, и импульса в формуле ) может дать длину волны де Бройля, достаточную для экспериментального обнаружения волновых свойств.

И вот оказывается, что электроны с энергией эВ (при такой энергии становится несущественным хаотическое тепловое движение электронов, и электронный пучок можно считать когерентным) имеют дебройлевскую длину волны примерно нм — это как раз порядка размера атома и расстояний между атомами в кристаллической решётке! Опыт по наблюдению дифракции рентгеновских лучей на кристаллических структурах уже имелся, поэтому оставалось направить на кристаллическую решётку пучок электронов.

Впервые это было сделано в знаменитом эксперименте американских физиков Дэвиссона и Джермера (1927 год). Дифракция электронов на кристаллах была обнаружена! Как и ожидалось, полученная дифракционная картина имела тот же характер, что и при дифракции на кристаллической решётке рентгеновских лучей.

Впоследствии волновые свойства были обнаружены и у более крупных частиц: протонов, нейтронов, атомов и молекул. Гипотеза де Бройля, таким образом, получила надёжное опытное подтверждение.

Соотношение неопределённостей

Обнаружение корпускулярных свойств электромагнитных волн и волновых свойств частиц показало, что объекты микромира подчиняются необычным законам. Эти законы совершенно непривычны для нас, привыкших наблюдать за макроскопическими телами.

Наше сознание выработало некоторые образы частицы и волны, вполне пригодные для описания объектов классической физики. Частица — это маленький, локализованный в пространстве сгусток вещества. Волна — это распределённый (не локализованный) в пространстве колебательный процесс. Как же эти понятия могут совмещаться в одном объекте (например, в электроне)?

Вообразить такое действительно получается с трудом. Но что поделать — это факт. Природа оказывается намного богаче нашего воображения. В своей повседневной жизни мы находимся очень далеко от микромира, и в привычном нам диапазоне макроскопических тел природа демонстрирует свои «крайние» проявления — в виде «только частиц» или «только волн». Вот почему корпускулярные и волновые свойства представляются нам несовместимыми друг с другом. Но на самом деле это не так: в микромире оказывается, что один и тот же объект (например, электрон) легко может обладать обоими свойствами одновременно — словно человек, обладающий разными, несовместимыми на первый взгляд чертами характера.

Так, будучи частицей, электрон локализован в пространстве; но, будучи волной, локализован не в точке, а «размазан» по некоторой области. Координаты и скорость электрона не могут быть измерены одновременно сколь угодно точно. Неопределённость координаты и неопределённость соответствующей проекции импульса оказываются связанными соотношением неопределённостей Гейзенберга:

Соотношение неопределённостей (2) имеет фундаментальный характер — оно применимо к любым объектам природы. Чем точнее мы знаем координаты объекта (то есть чем в меньшей пространственной области он локализован), тем больше получается разброс значений его импульса(то есть тем с большей скоростью объект «готов вылететь» из этой области). И наоборот, чем точнее мы знаем импульс объекта, тем меньше у нас информации о том, где этот объект находится.

Но коль скоро нет возможности одновременно точно измерить координаты и скорость, то теряет смысл понятие траектории движения объекта. Механика Ньютона перестаёт работать в микромире и уступает место квантовой механике.

Гипотеза и уравнение де бройля

Элементы квантовой механики

Корпускулярно-волновой дуализм свойств частиц вещества.

§1 Волны де Бройля

В 1924г. Луи де Бройль (французский физик) пришел к выводу, что двойственность света должна быть распространена и на частицы вещества — электроны. Гипотеза де Бройля заключалась в том, что электрон, корпускулярные свойства которого (заряд, масса) изучаются давно, имеет еще и волновые свойства, т.е. при определенных условиях ведет себя как волна.

Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов.

Идея де Бройля состояла в том, что это соотношение имеет универсальный характер, справедливый для любых волновых процессов. Любой частице, обладающей импульсом р, соответствует волна, длина которой вычисляется по формуле де Бройля.

— волна де Бройля

p = mv — импульс частицы, h — постоянная Планка.

Волны де Бройля , которые иногда называют электронными волнами, не являются электромагнитными.

В 1927 году Дэвиссон и Джермер ( амер. физик ) подтвердили гипотезу де Бройля обнаружив дифракцию электронов на кристалле никеля. Дифракционные максимумы соответствовали формуле Вульфа — Брэггов 2 dsin j = n l , а брэгговская длина волны оказалась в точности равной .

Дальнейшее подтверждение гипотезы де Бройля в опытах Л.С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (Е » 50 кэВ) через фольгу из различных металлов. Затем была обнаружена дифракция нейтронов, протонов, атомных пучков и молекулярных пучков. Появились новые методы исследования вещества — нейтронография и электронография и возникла электронная оптика.

Макротела также должны обладать всеми свойствами ( m = 1кг, следовательно, l = 6 . 6 2 · 1 0 — 3 1 м — невозможно обнаружить современными методами — поэтому макротела рассматриваются только как корпускулы).

§2 Свойства волн де Бройля

  • Пусть частица массы m движется со скоростью v . Тогда фазовая скорость волн де Бройля

.

Т.к. c > v , то фазовая скорость волн де Бройля больше скорости света в вакууме ( v ф может быть больше и может быть менше с, в отличие от групповой ).

  • следовательно, групповая скорость волн де Бройля равна скорости движения частицы.

т.е. групповая скорость равная скорости света.

  • Волны де Бройля испытывают дисперсию. Подставив в получим, что vф = f (λ). Из-за наличия дисперсии волны де Бройля нельзя представить в виде волнового пакета, т.к. он мгновенно “ расплывется “ (исчезнет) за время 10 -26 с.

§3 Соотношение неопределенностей Гейзенберга

Микрочастицы в одних случаях проявляют себя как волны, в других как корпускулы. К ним не применимы законы классической физики частиц и волн. В квантовой физике доказывается, что к микрочастице нельзя применять понятие траектории, но можно сказать, что частица находится в данном объеме пространства с некоторой вероятностью Р. Уменьшая объем, мы будем уменьшать вероятность обнаружить частицу в нем. Вероятностное описание траектории (или положения) частицы приводит к тому, что импульс и, следовательно, скорость частицы может быть определена с какой-то определенной точностью.

Далее, нельзя говорить о длине волны в данной точке пространства и отсюда следует, что если мы точно задаем координату Х, то мы ничего не сможем сказать о импульсе частицы, т.к. . Только рассматривая протяженный участок D C мы сможем определить импульс частицы. Чем больше D C , тем точнее D р и наоборот, чем меньше D C , тем больше неопределенность в нахождении D р .

Соотношение неопределенностей Гейзенберга устанавливает границу в одновременном определении точности канонически сопряженных величин, к которым относятся координата и импульс, энергия и время.

Соотношение неопределенностей Гейзенберга: произведение неопределенностей значений двух сопряженных величин не может быть по порядку величины меньше постоянной Планка h

( иногда записывают )

Таким образом. для микрочастицы не существует состояний, в которых её координата и импульс имели бы одновременно точные значения. Чем меньше неопределенность одной величины, тем больше неопределенность другой.

Соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.

следовательно, чем больше m , тем меньше неопределенности в определении координаты и скорости. При m = 10 -12 кг , ? = 10 -6 и Δ x = 1% ?, Δv = 6,62·10 -14 м/с, т.е. не будет сказываться при всех скоростях, с которыми пылинки могут двигаться, т.е. для макротел их волновые свойства не играют никакой роли.

Пусть электрон движется в атоме водорода. Допустим Δ x » 1 0 -10 м (порядка размеров атома, т.е. электрон принадлежит данному атому). Тогда

Δv = 7,27· 1 0 6 м/с. По классической механике при движении по радиусу r » 0 , 5 · 1 0 — 1 0 м v = 2,3·10 -6 м/с. Т.е. неопределенность скорости на порядок больше величины скорости, следовательно, нельзя применять законы классической механики к микромиру.

Из соотношения следует, что система имеющая время жизни D t , не может быть охарактеризована определенным значением энергии. Разброс энергии возрастает с уменьшением среднего времени жизни. Следовательно, частота излученного фотона также должна иметь неопределенность D n = D E / h , т.е. спектральные линии будут иметь некоторую ширину n ± D E / h , будут размыты. Измерив ширину спектральной линии можно оценить порядок времени существования атома в возбужденном состоянии.

§4 Волновая функция и ее физический смысл

Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях — имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону ( т.е.

еiωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн ( немецкий физик ) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или y -функцией (пси — функцией).

Волновая функция — функция координат и времени.

Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV — физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ * — функция комплексно сопряженная с Ψ

Если частица находится в конечном объеме V , то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

Р = 1 Þ

В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

y — функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

  • непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),
  • Волновая функция удовлетворяет принципусуперпозиции: если система может находится в различных состояниях, описываемых волновыми функциями y 1 , y 2 . y n , то она может находится в состоянии y , описываемой линейной комбинаций этих функций:

С n ( n =1,2. ) — любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

§5 Уравнение Шредингера

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

(1)

— Временное уравнение Шредингера.

— набла — оператор Лапласа

— потенциальная функция частицы в силовом поле,

Ψ( y , z , t ) — искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ — функция) может быть представлено в виде произведения двух сомножителей — один зависит только от координат, другой — только от времени:

(2)

Е — полная энергия частицы, постоянная в случае стационарного поля.

(3)

— Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

волновые функции должны быть регулярными, т.е.

Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии — собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр — дискретный, если непрерывные — сплошной или непрерывный.

§6 Движение свободной частицы

Частица называется свободной, если на нее не действуют силовые поля, т.е. U = 0.

Уравнение Шредингера для стационарных состояний в этом случае:

И собственные значения энергии:

Т.к. k может принимать любые значения, то, следовательно, и Е принимает любые значения, т.е. энергетический спектр будет сплошным.

Временная волновая функция

(- уравнение волны)

т.е. представляет плоскую монохромную волну де Бройля.

§7 Частица в “потенциальной яме” прямоугольной формы.

Квантование энергии.

Найдем собственные значения энергии и соответствующие им собственные функции для частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Предположим что, частица может двигаться только вдоль оси x . Пусть движение ограничено непроницаемыми для частицы стенками x = 0, и x = ?. Потенциальная энергия U имеет вид:

Уравнение Шредингера для стационарных состояний для одномерной задачи

За пределы потенциальной ямы частица попасть не сможет, поэтому вероятность обнаружения частицы вне ямы равна 0.Следовательно, и Ψ за пределами ямы равна 0 .Из условий непрерывности следует, что Ψ = 0 и на границах ямы т.е.

В пределах ямы (0 £ x £ l ) U = 0 и уравнение Шредингера.

введя получим

;

из граничных условий следует

Из граничного условия

Þ

Энергия Е n частицы в «потенциальной яме» с бесконечно высокими стенками принимает лишь определенные дискретные значения, т.е. квантуется. Квантованные значения энергии Е n называются уровнями энергии, а число n , определяющее энергические уровни частицы, называется главным квантовым числом. Т.е. частицы в «потенциальной яме» могут находиться только на определенном энергетическом уровне Е n (или находятся в квантовом состоянии n )

Собственные функции:

А найдем из усилия нормировки

— плотность вероятности. Из рис. видно, что плотность вероятности меняется в зависимости от n : при n = 1 частица, скорее всего, будет посередине ямы, но не на краях, при n = 2 — будет или в левой или в правой половине, но не посередине ямы и не на краях, и т.д. Т.е нельзя говорить о траектории движения частицы.

Энергетический интервал между соседними уровнями энергии:

При n = 1 имеет наименьшую энергию отличную от нуля

Наличие минимума энергии следует из соотношения неопределенностей, т.к.,

C ростом n расстояние между уровнями уменьшается и при n ® ¥ Е n практически непрерывны, т.е. дискретность сглаживается, т.е. выполняется принцип соответствия Бора: при больших значениях квантовых чисел законы квантовой механики переходят в законы классической физики.

Общая трактовка принципа соответствия: всякая новая, более общая теория является развитием классической, не отвергает ее полностью, а включает в себя классическую, указывая границы её применимости.

§ 8 Туннельный эффект.

Прохождение частицы через потенциальный барьер

Для классической частицы : при Е > U она пройдет над барьером, при Е U — отразится от него; для квантовой : при Е > U есть вероятность того, что частица отразится, при Е U есть вероятность того, что пройдет сквозь барьер.

Потенциальная энергия:

Уравнение Шредингера: для области 1 и 3 :

для области 2:

Решение этих диф. уравнений;

Для 1;

Для 2;

Для 3:

Т.к. в области 3 возможно распределение только прошедшей волны, то, Þ , В3=0.

В области 2 решение зависит от соотношений Е > U или Е U . Физический интерес представляет случай Е U .

q = i b , где

Тогда решение уравнения Шредингера запишутся в виде:

Для 1;

Для 2;

Для 3:

Качественный вид функций показан на рис. 2. Из рис. 2 видно, что функция не равна нулю внутри барьера, а в 3 имеет вид волны де Бройля, если барьер не очень широк.

Явление “проникновения” частицы сквозь потенциальный барьер, называется туннельным эффектом. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы можно объяснить используя соотношения неопределенностей: неопределенность импульса D р на отрезке D x = ? составляет . Связанная с этим разбросом в значениях импульса кинетическая энергия может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной энергии барьера.

§9 Линейный гармонический осциллятор

Линейный гармонический осциллятор — система, совершающая одномерное колебательное движение под действием квазиупругой силы — является моделью для изучения колебательного движения.

В классической физике — это пружинный, физический и математический маятники. В квантовой физике — квантовый осциллятор.

Записав потенциальную энергию в виде

Уравнение Шредингера запишется в виде:

Тогда собственные значения энергии:

т.е. энергия квантового осциллятора принимает дискретные значения, т.е. квантуется. Минимальное значение — энергия нулевых колебаний — является следствием состояния неопределенности так же, как и в случае частицы в “потенциальной яме”.

Наличие нулевых колебаний означает, что частицы не могут упасть на дно ямы, т.к. в этом случае был бы точно определен ее импульс p = 0, D p = 0, Þ , D x = ¥ — не соответствует соотношению неопределенностей. Наличие энергии нулевых колебаний противоречит классическим представлениям, по которым E min = 0. — уровни энергии расположенные на равных расстояниях друг от друга. Из квантового рассмотрения следует, что частицу можно обнаружить вне области. По классическому рассмотрению только в пределах – x £ x £ x (Рис.2).


источники:

http://ege-study.ru/ru/ege/materialy/fizika/korpuskulyarno-volnovoj-dualizm/

http://www.bog5.in.ua/lection/quantum_optics_lect/lect6_quant.html