Графический способ решения показательных уравнений и неравенств

Открытый урок по теме «Показательная функция. Функционально-графические методы решений уравнений и неравенств»

Разделы: Математика

Цель: рассмотреть задачи Единого государственного экзамена базового, повышенного и высокого уровня сложности с применением функционально- графических методов на примере показательной функции у = а х , а>1, а0.

Задачи урока:

  1. повторить свойство монотонности показательной функции;
  2. свойство ограниченности показательной функции;
  3. повторить определение абсолютной величины; работа с графиками, содержащими модуль;
  4. ввести понятие сложной функции; рассмотреть графики сложной функции и их область значений;

Оборудование: презентация графиков функций, подготовленная с применением графической программы “Advanced Grapher”.

1. Вступительное слово учителя.

Слайд 0. Показательная функция. “Функционально — графические методы решения уравнений и неравенств”

Функционально — графический метод основан на использовании графических иллюстраций, применении свойств функции и позволяет решать многие задачи математики.

Сегодня мы рассмотрим задачи Единого государственного экзамена базового, повышенного и высокого уровня сложности с применением функционально- графических методов на примере показательной функции у = а х , а>1, а0. С помощью графической “Advanced Grapher” выполним иллюстрации ко всем задачам.

Слайд 0а. Почему так важно знать свойства показательной функции?.

  • По закону показательной функции размножалось бы все живое на Земле, если бы для этого имелись благоприятные условия, т.е. не было естественных врагов и было вдоволь пищи. Доказательство тому – распространение в Австралии кроликов, которых там не было раньше. Достаточно было выпустить пару особей, как через некоторое время их потомство стало национальным бедствием.
  • В природе, технике и экономике встречаются многочисленные процессы, в ходе которых значение величины меняется в одно и то же число раз, т.е. по закону показательной функции. Эти процессы называются процессами органического роста или органического затухания.
  • Например, рост бактерий в идеальных условиях соответствует процессу органического роста; радиоактивный распад веществ – процессу органического затухания.
  • Законам органического роста подчиняется рост вклада в Сберегательном банке, восстановление гемоглобина в крови у донора или раненого, потерявшего много крови.

2. Актуализация знаний учащихся.

На первом этапе урока устно по готовым чертежам повторим свойства показательной функции:

  • определение по графику функции соответствующей формулы;
  • свойство монотонности показательной функции;
  • свойство ограниченности показательной функции;

Слайд 1. Определить вид графика (устная работа 5 минут). На рисунке изображены графики показательных функций. Соотнесите график функции с формулой.


Рисунок1.


Рисунок2.


Рисунок3.


Рисунок4.

Слайд 2. Свойство монотонности показательной функции (устная работа 2 минуты).

Назовите функцию, возрастающую (убывающую) на множестве действительных чисел. Соотнесите график с соответствующей формулой


Рисунок5.


Рисунок6.

При 1 0 показательная функция убывает.

Слайд 3. Свойство ограниченности показательной функции (устная работа 2 минуты).

Укажите множество значений функции.


Рисунок7.

Графические методы дают возможность решать неравенства, содержащие разные функции.

Слайд 4. Решить графически неравенство.

Что можно сказать про графики функций и график функции у=12 — 1,5х?

(График показательной функции лежит выше функции, записанной в правой части уравнения).

>12 — 1,5х

Рисунок8.
Ответ: х>2. О

Рисунок9.
Oтвет: х>0.

2. Показательная функция содержит знак модуля в показателе степени.

Группа В – это комбинированные задачи. Рассмотрим задачи, содержащие абсолютную величину (модуль).

Повторим определение модуля.

(запись на доске)

Слайд 5. Укажите множество значений функции (5 минут).

Сделать записи в тетради:

1).

2).

Графическая иллюстрация представлена на слайде 5. Объяснить, как построены графики.

Рисунок10.
Е(у)=[1;

3. Нахождение области значений сложной функции.

Достаточно непросто определять область значений сложных функций.

Определим, что такое сложная функция. Если функция f ставит в соответствие числу х число у, а функция g – числу у число z, то говорят что h есть сложная функция, составленная из функции g и f и пишут h=g(f(x)).

При этом D(h) является E(f) или его частью D(h)E(f).

Слайд 7. Используя умение строить график квадратичной функции, определите последовательно координаты вершины параболы, найдите область значений.

, — вершина параболы.

Вопрос: определите характер монотонности функции.

Показательная функция у = 16 t возрастает, так как 16>1 .

При наименьшем значении показателя функции

.

Е(у)=[2;.

График иллюстрирует наш вывод.

Вопрос: определите характер монотонности функции.

Показательная функция у = убывает, так как х =t, t>0.

3t (3t 2 -6t) + 9t – 5 = p.

Введем функцию f(t) = 9t 3 -18t 2 + 9t – 5.

Исследуем функцию с помощью производной и построим ее график.

f ‘(x) =27t 2 – 36t + 9.

Найдем стационарные точки: f ‘(x)=0.

27t 2 – 36t + 9 = 0.

t1=1, t2=.

f()=9=-2+3-5=,

График функции f(t) = 9t 3 -18t 2 + 9t – 5 изображен на рисунке. Уравнение имеет 1 корень при р = -5 и р> .

Графическая иллюстрация решения выполнена с использованием программы “Advanced Grapher”.

1).

2).

3).Найдите все значения р, при которых уравнение

имеет ровно два корня.

6. Самостоятельная работа (при наличии времени).

Решить графически неравенство.

1).. Ответ: (-;2].

2). . Ответ: (-1;0)

По мере изучения курса алгебры постоянно возрастает применение функционально-графических методов, что позволяет быстро и красиво решать многие уравнения и неравенства Единого Государственного экзамена.

Алгебра

План урока:

Простейшие показательные уравнения а х = b

Его называют показательным уравнением, ведь переменная находится в показателе степени. Для его решения представим правую часть как степень числа 2:

Тогда уравнение будет выглядеть так:

Теперь и справа, и слева стоят степени двойки. Очевидно, что число 3 будет являться его корнем:

Является ли этот корень единственным? Да, в этом можно убедиться, если построить в координатной плоскости одновременно графики у = 2 х и у = 8. Второй график представляет собой горизонтальную линию.

Пересекаются эти графики только в одной точке, а потому найденное нами решение х = 3 является единственным.

Так как любая показательная функция является монотонной, то есть либо только возрастает (при основании, большем единицы), либо только убывает (при основании, меньшем единицы), то в общем случае ур-ние а х = b может иметь не более одного решения. Это является следствием известного свойства монотонных функций – горизонтальная линия пересекает их не более чем в одной точке.

Сразу отметим, что если в ур-нии вида а х = b число b не является положительным, то корней у ур-ния не будет вовсе. Это следует из того факта, что область значений показательной функции – промежуток (0; + ∞), ведь при возведении в степень любого положительного числа результат всё равно остается положительным. Можно проиллюстрировать это и графически:

Решая простейшее показательное уравнение

мы специально представляли правую часть как степень двойки:

После этого мы делали вывод, что если в обеих частях ур-ния стоят степени с равными основаниями (2 = 2), то у них должны быть равны и показатели. Это утверждение верно и в более общем случае. Если есть ур-ние вида

то его единственным решением является х = с.

Задание. Найдите решение показательного уравнения

Решение. У обоих частей равны основания, значит, равны и показатели:

Задание. Найдите корень уравнения

Решение. Заметим, что число 625 = 5 4 . Тогда ур-ние можно представить так:

Отсюда получаем, что х = 4.

Видно, что основной метод решения показательных уравнений основан на его преобразовании, при котором и в правой, и в левой части стоят степени с совпадающими основаниями.

Задание. При каком х справедливо равенство

Решение. Преобразуем число справа:

Теперь ур-ние можно решить:

Задание. Решите ур-ние

Решение. Любое число при возведении в нулевую степень дает единицу, а потому можно записать, что 1 = 127 0 . Заменим с учетом этого правую часть равенства:

Уравнения вида а f( x) = a g ( x)

Рассмотрим чуть более сложное показательное ур-ние

Для его решения заменим показатели степеней другими величинами:

Теперь наше ур-ние принимает вид

Такие ур-ния мы решать умеем. Надо лишь приравнять показатели степеней:

При решении подобных ур-ний введение новых переменных опускают. Можно сразу приравнять показатели степеней, если равны их основания:

В общем случае использованное правило можно сформулировать так:

Задание. Найдите корень ур-ния

Решение. Представим правую часть как степень двойки:

Тогда ур-ние примет вид

Теперь мы имеем право приравнять показатели:

Задание. Укажите значение х, для которого выполняется условие

Решение. Здесь удобнее преобразовать не правую, а левую часть. Заметим, что

С учетом этого можно записать

Основания у выражений слева и справа совпадают, а потому можно приравнять показатели:

Задание. Укажите корень показательного уравнения

Решение. Для перехода к одному основанию представим число 64 как квадрат восьми:

Тогда ур-ние примет вид:

Задание. Найдите корень ур-ния

Решение. Здесь ситуация чуть более сложная, ведь число 2 невозможно представить как степень пятерки, а пятерки не получится выразить как степень двойки. Однако у обеих степеней в ур-нии совпадают показатели. Напомним, что справедливы следующие правила работы со степенями:

С учетом этого поделим обе части ур-ния на выражения 5 3+х :

Задание. При каких х справедлива запись

Можно сделать преобразования, после которых в ур-нии останется только показательная функция 5 х . Для этого произведем следующие замены:

Перепишем исходное ур-ние с учетом этих замен:

Теперь множитель 5 х можно вынести за скобки:

Рассмотрим чуть более сложное ур-ние, которое может встретиться на ЕГЭ в задании повышенной сложности №13.

Задание. Найдите решение уравнения

Решение. Преобразуем левое слагаемое:

Перепишем начальное ур-ние, используя это преобразование

Теперь мы можем спокойно вынести множитель за скобки:

Получили одинаковые основания слева и справа. Значит, можно приравнять и показатели:

Это квадратное уравнение, решение которого не должно вызывать у десятиклассника проблем:

Задачи, сводящиеся к показательным уравнениям

Рассмотрим одну прикладную задачу, встречающуюся в ЕГЭ по математике.

Задание. Из-за радиоактивного распада масса слитка из изотопа уменьшается, причем изменение его массы описывается зависимостью m(t) = m0 • 2 – t/ T , где m0 – исходная масса слитка, Т – период полураспада, t – время. В начальный момент времени изотоп, чей период полураспада составляет 10 минут, весит 40 миллиграмм. Сколько времени нужно подождать, чтобы масса слитка уменьшилась до 5 миллиграмм.

Решение. Подставим в заданную формулу значения из условия:

m0 = 40 миллиграмм;

m(t) = 5 миллиграмм.

В результате мы получим ур-ние

из которого надо найти значение t. Поделим обе части на 40:

Далее решим чуть более сложную задачу, в которой фигурирует сразу 2 радиоактивных вещества.

Задание. На особо точных рычажных весах в лаборатории лежат два слитка из радиоактивных элементов. Первый из них весит в начале эксперимента 80 миллиграмм и имеет период полураспада, равный 10 минутам. Второй слиток весит 40 миллиграмм, и его период полураспада составляет 15 минут. Изначально весы наклонены в сторону более тяжелого слитка. Через сколько минут после начала эксперимента весы выровняются? Масса слитков меняется по закону m(t) = m0 • 2 – t/ T , где m0 и Т – это начальная масса слитка и период его полураспада соответственно.

Решение. Весы выровняются тогда, когда массы слитков будут равны. Если подставить в данную в задаче формулу условия, то получится, что масса первого слитка меняется по закону

а масса второго слитка описывается зависимостью

Приравняем обе формулы, чтобы найти момент времени, когда массы слитков совпадут (m1 = m2):

Делим обе части на 40:

Основания равны, а потому приравниваем показатели:

Уравнения с заменой переменных

В ряде случаев для решения показательного уравнения следует ввести новую переменную. В учебных заданиях такая замена чаще всего (но не всегда) приводит к квадратному ур-нию.

Задание. Решите уравнение методом замены переменной

Заметим, что в уравнении стоят степени тройки и девятки, но 3 2 = 9. Тогда введем новую переменную t = 3 x . Если возвести ее в квадрат, то получим, что

C учетом этого изначальное ур-ние можно переписать:

Получили обычное квадратное ур-ние. Решим его:

Мы нашли два значения t. Далее необходимо вернуться к прежней переменной, то есть к х:

Первое ур-ние не имеет решений, ведь показательная функция может принимать лишь положительные значения. Поэтому остается рассмотреть только второе ур-ние:

Задание. Найдите корни ур-ния

Решение. Здесь в одном ур-нии стоит сразу три показательных функции. Попытаемся упростить ситуацию и избавиться от одной из них. Для этого поделим ур-ние на выражение 4 4х+1 :

Так как 1 4х+1 = 1, мы можем записать:

Обратим внимание, что делить ур-ние на выражение с переменной можно лишь в том случае, если мы уверены, что оно не обращается в ноль ни при каких значениях х. В данном случае мы действительно можем быть в этом уверены, ведь величина 4 4х+1 строго положительна при любом х.

Вернемся к ур-нию. В нем стоят величины (9/4) 4х+1 и (3/2) 4х+1 . У них одинаковые показатели, но разные степени. Однако можно заметить, что

9/4 = (3/2) 2 , поэтому и (9/4) 4х+1 = ((3/2) 4х+1 ) 2 . Это значит, что перед нами уравнение с заменой переменных.

Произведем замену t = (3/2) 4х+1 , тогда (9/4) 4х+1 = ((3/2) 4х+1 ) 2 = t 2 . Далее перепишем ур-ние с новой переменной t:

Снова получили квадратное ур-ние.

Возвращаемся к переменной х:

И снова первое ур-ние не имеет корней, так как при возведении положительного числа в степень не может получится отрицательное число. Остается решить второе ур-ние:

Графическое решение показательных уравнений

Не всякое показательное уравнение легко или вообще возможно решить аналитическим способом. В таких случаях выручает графическое решение уравнений.

Задание. Найдите графическим способом значение х, для которого справедливо равенство

Решение. Построим в одной системе координат графики у = 3 х и у = 4 – х:

Видно, что графики пересекаются в одной точке с примерными координатами (1; 3). Так как графический метод не вполне точный, следует подставить х = 1 в ур-ние и убедиться, что это действительно корень ур-ния:

Получили верное равенство, значит, х = 1 – это действительно корень ур-ния.

Задание. Решите графически ур-ние

Решение. Перенесем вправо все слагаемые, кроме 2 х :

Слева стоит показательная функция, а справа – квадратичная. Построим их графики и найдем точки пересечения:

Видно, что у графиков есть две общие точки – это (0;1) и (1; 2). На всякий случай проверим себя, подставив х = 0 и х = 1 в исходное ур-ние:

Ноль подходит. Проверяем единицу:

И единица тоже подошла. В итоге имеем два корня, 0 и 1.

Показательные неравенства

Рассмотрим координатную плоскость, в которой построен график некоторой показательной ф-ции у = а х , причем а > 0. Пусть на оси Ох отложены значения s и t, и t t и a s на оси Оу. Так как

является возрастающей функцией, то и величина a t окажется меньше, чем a s . Другими словами, точка a t на оси Оу будет лежать ниже точки а s (это наглядно видно на рисунке). Получается, что из условия t t s . Это значит, что эти два нер-ва являются равносильными.

С помощью этого правила можно решать некоторые простейшие показательные неравенства. Например, пусть дано нер-во

Представим восьмерку как степень двойки:

По только что сформулированному правилу можно заменить это нер-во на другое, которое ему равносильно:

Решением же этого линейного неравенства является промежуток (– ∞; 3).

Однако сформулированное нами правило работает тогда, когда основание показательной ф-ции больше единицы. А что же делать в том случае, если оно меньше единицы? Построим график такой ф-ции и снова отложим на оси Ох точки t и s, причем снова t будет меньше s, то есть эта точка будет лежать левее.

Так как показательная ф-ция у = а х при основании, меньшем единицы, является убывающей, то окажется, что на оси Оу точка a s лежит ниже, чем a t . То есть из условия t t > a s . Получается, что эти нер-ва равносильны.

Например, пусть надо решить показательное неравенство

Выразим число слева как степень 0,5:

Тогда нер-во примет вид

По рассмотренному нами правилу его можно заменить на равносильное нер-во

В более привычном виде, когда выражение с переменной стоит слева, нер-во будет выглядеть так:

а его решением будет промежуток (3; + ∞).

В общем случае мы видим, что если в показательном нер-ве вида

основание a больше единицы, то его можно заменить равносильным нер-вом

Грубо говоря, мы просто убираем основание степеней, а знак нер-ва остается неизменным. Если же основание а меньше единицы, то знак неравенства необходимо поменять на противоположный:

Это правило остается верным и в том случае, когда вместо чисел или переменных t и s используются произвольные функции f(x) и g(x). Сформулируем это правило:

Таким образом, для решения показательных неравенств их следует преобразовать к тому виду, при котором и справа, и слева стоят показательные ф-ции с одинаковыми показателями, после чего этот показатель можно просто отбросить. Однако надо помнить, что при таком отбрасывании знак нер-ва изменится на противоположный, если показатель меньше единицы.

Задание. Решите простейшее неравенство

Представим число 64 как степень двойки:

теперь и справа, и слева число 2 стоит в основании. Значит, его можно отбросить, причем знак нер-ва останется неизменным (ведь 2 > 1):

Задание. Найдите промежуток, на котором выполняется нер-во

Решение. Так как основание степеней, то есть число 0,345, меньше единицы, то при его «отбрасывании» знак нер-ва должен измениться на противоположный:

Это самое обычное квадратное неравенство. Для его решения нужно найти нули квадратичной функции, стоящей слева, после чего отметить их на числовой прямой и определить промежутки, на которых ф-ция будет положительна.

Нашли нули ф-ции. Далее отмечаем их на прямой, схематично показываем параболу и расставляем знаки промежутков:

Естественно, что в более сложных случаях могут использоваться всё те же методы решения нер-ва, которые применяются и в показательных ур-ниях. В частности, иногда приходится вводить новую переменную.

Задание. Найдите решение нер-ва

Решение. Для начала представим число 3 х+1 как произведение:

Теперь перепишем с учетом этого исходное нер-во:

Получили дробь, в которой есть одна показательная ф-ция 3 х . Заменим её новой переменной t = 3 x :

Это дробно-рациональное неравенство, которое можно заменить равносильным ему целым нер-вом:

которое, в свою очередь, решается методом интервалов. Для этого найдем нули выражения, стоящего слева

Отмечаем найденные нули на прямой и расставляем знаки:

Итак, мы видим, что переменная t должна принадлежать промежутку (1/3; 9), то есть

Теперь произведем обратную замену t = 3 x :

Так как основание 3 больше единицы, просто откидываем его:

Итак, мы узнали о показательных уравнениях и неравенствах и способах их решения. В большинстве случаев необходимо представить обе части равенства или неравенства в виде показательных степеней с одинаковыми основаниями. Данное действие иногда называют методом уравнивания показателей. Также в отдельных случаях может помочь графический способ решения ур-ний и замена переменной.

Интегрированный урок по алгебре и информатике «Решение показательных уравнений. Графический способ»
презентация к уроку по алгебре (10 класс) на тему

Интегрированный урок посвящен изучению графического метода решения показательных уравнений и неравенств. В ходе урока дети строят графики, используя знания по информатике и в ходе исследований формируют вывод: Как решить уравнение и неравенство графическим методом.

Скачать:

ВложениеРазмер
Презентация к уроку «Графический способ решения показательных уравнений и неравенств»148.14 КБ

Предварительный просмотр:

Подписи к слайдам:

Графическое решение показательных уравнений и неравенств Учитель: Санникова Наталья Владимировна

Функция вида у = а x ( a >0 ) , х≠0 называется показательной . х -3 -2 -1 0 1 2 3 у 1/8 1/4 1/2 1 2 4 8 Показательная функция бывает двух видов в зависимости от основания. Пусть а > 1 а = 2, у = 2 х 1) D (у) = (- ∞ ; + ∞); 2) Е(у) = (0; + ∞); 4) Функция возрастает на D (у ) (- ∞ ; + ∞) ; 5) При х = 0, у = 1 – особая точка! 6) х = 0 , асимптота графика 7) функция не обладает свойством четности и нечетности; х у 1 2 — 3 3 2 1 — 2 4 5 6 -1 3 7 у = 2 х

Функция вида у = а x ( a >0 ) , х≠0 называется показательной . х -3 -2 -1 0 1 2 3 у 8 4 2 1 1/2 1/4 1/8 Показательная функция бывает двух видов в зависимости от основания. Пусть 0 Мне нравится


источники:

http://100urokov.ru/predmety/urok-7-uravneniya-pokazatelnye

http://nsportal.ru/shkola/algebra/library/2014/10/21/integrirovannyy-urok-po-algebre-i-informatike-reshenie