Графическое решение квадратных уравнений за 8 класс

Презентация по математике «Графическое решение квадратных уравнений» (8 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

3х2 + 6х = 0 2) х2–4 = 0 3) (х–5)(х+1) = 0 4) х2–4х+3 = 0.

3х2 + 6х = 0 3х (х+2) = 0 х = 0 или х+2 = 0 х = – 2 Ответ: – 2; 0. х2 – 4 = 0 (х – 2 ) (х + 2) = 0 х – 2 = 0 или х + 2 = 0 х = 2 х = –2 Ответ: –2; 2.

(х–5)(х+1) = 0 (х2 – 4х –5 = 0) х – 5 = 0 или х+1 = 0 Х = 5 х = –1 Ответ: –1; 5. х2–4х+3 = 0 Как его решить?

Квадратным уравнением называют уравнение вида ах2+bх+с=0, где а, b, с – любые числа, причем а 0.

1. Построить график квадратичной функции у = ах2 + bх + с. 2. Найти точки пересечения параболы с осью х. 3. Записать корни уравнения, которыми являются абсциссы точек пересечения

1 способ Корнями уравнения являются абсциссы точек пересечения с осью х. Ответ: х1 = -1, х2 = 3. -1 3 1 Построим график функции у = х2 — 2х – 3. График – парабола, ветви вверх. Вершина (х0; у0): х 0 = — , а = 1, b = — 2, х0 = — = 1. у0 = 12 – 2 ∙ 1 – 3 = — 4, 2. Симметричные точки: х = 0 и х = 2, у (0) = у (2) = 02 — 2∙ 0 – 3 = — 3 , (0; — 3), (2; — 3) 3. Дополнительные точки: х = — 1 и х = 3, у (- 1) = у (3) = 1 + 2 – 3 = 0, (- 1; 0), (3; 0) (1; — 4) х у

Преобразуем уравнение к виду Построим в одной системе координат графики функций -это парабола -это прямая 3 -1 3 Корнями уравнения являются абсциссы точек пересечения: -1 и 3 Ответ: х1 = -1, х2 = 3. 2 способ х у 9

6 -1 3 х у 3 способ Преобразуем уравнение х2 — 2х – 3 = 0 к виду х2 — 3 = 2х — 3 Построим в одной системе координат графики функций у = х2 – 3 и у = 2х у = х2 — 3 – это парабола у = 2х – это прямая Корнями уравнения являются абсциссы точек пересечения: -1 и 3 Ответ: х1 = -1, х2 = 3.

4 способ у = х — 2 – это прямая у = – это гипербола Преобразуем уравнение х2 — 2х – 3 = 0 к виду х — 2 = Построим в одной системе координат графики функций у = х – 2 и у = Корнями уравнения являются абсциссы точек пересечения: -1 и 3 Ответ: х1 = -1, х2 = 3. 3

5 способ Преобразуем уравнение х2 — 2х – 3 = 0 к виду (х — 1)2 = 4 Построим в одной системе координат графики функций у = (х – 1)2 и у = 4 у = (х — 1)2 — сдвиг параболы вправо на 1 единицу у = 4 — это прямая -1 4 3 х у Корнями уравнения являются абсциссы точек пересечения: -1 и 3 Ответ: х1 = -1, х2 = 3.

1 способ 2 способ 3 способ 4 способ 5 способ х2 — 3 = 2х х — 2 = (х — 1)2 = 4

х2 — х – 3 = 0 Решим вторым способом х2 = х + 3 у = х2 – парабола у = х + 3 – прямая у х 1 А В

Немного истории В 1591г. Франсуа Виет вывел формулы для нахождения корней квадратных уравнений, однако он не признавал отрицательных чисел. Лишь в XVIII веке благодаря трудам учёных Жирара, Декарта, Ньютона, способ решения квадратных уравнений принял современный вид.

1 способ 2 способ 3 способ 4 способ 5 способ Ответ: х = -2, х = 4. х2 – 2х – 8 = 0

Тема сложная, вызывает у меня затруднение – Есть отдельные затруднения – Мне всё понятно –

Краткое описание документа:

Данная презентация создана для урока алгебры в 8 классе по теме » Графическое решение квадратных уравнений» по учебнику А.М. Мордковича. На уроке применяется технология разноуровневой дифференциации для обучающихся трёх гомогенных групп и проблемная ситуация. Одна и та же задача решается несколькими способами с помощью потроения графиков функций, которые изучались на данный момент. В ходе урока используется историческая справка о решении квадратных уравнений. Данная презентация помогает быстро и наглядно провести проверку выполнения дифференцированных заданий, которые выполняют группы.

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 115 человек из 42 регионов

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 233 человека из 54 регионов

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 351 человек из 63 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 582 271 материал в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 15.03.2015
  • 1013
  • 0
  • 15.03.2015
  • 816
  • 2
  • 15.03.2015
  • 1517
  • 1
  • 15.03.2015
  • 1195
  • 0
  • 15.03.2015
  • 2499
  • 0
  • 15.03.2015
  • 505
  • 0
  • 15.03.2015
  • 583
  • 0

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 15.03.2015 3264
  • PPTX 815.5 кбайт
  • 241 скачивание
  • Оцените материал:

Настоящий материал опубликован пользователем Касаткина Светлана Михайловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 11 месяцев
  • Подписчики: 0
  • Всего просмотров: 4300
  • Всего материалов: 2

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

ЕГЭ в 2022 году будут сдавать почти 737 тыс. человек

Время чтения: 2 минуты

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Решение квадратных уравнений графическим способом. 8-й класс

Класс: 8

Презентации к уроку

Загрузить презентацию (516 кБ)

“Математика – это язык, на котором
говорят все точные науки”
Н. И. Лобачевский.

  1. Образовательные: познакомить учащихся с графическим способом решения квадратных уравнений, повторить ранее изученные методы решения квадратных уравнений, виды графиков и свойства функций у = , у = х 2 , закрепить навыки построения графиков функций.
  2. Развивающие: развивать навыки творческой, познавательной, мыслительной деятельности, логическое мышление, вырабатывать умение анализировать и сравнивать.
  3. Воспитательные: воспитывать сознательное отношение к учебному труду, развивать интерес к математике, самостоятельность, прививать аккуратность и трудолюбие.

Оборудование: мультимедийный проектор, компьютеры, карточки с дифференцированными заданиями, сигнальные карточки.
Тип урока: урок формирования знаний.
Вид урока: урок – практикум.
Методы урока: словесные, наглядные, практические.
Организационные формы общения: индивидуальная, парная, коллективная.
Презентация к уроку.

1. Мотивационная беседа с последующей постановкой цели.
2. Актуализация опорных знаний – устная работа, с помощью которой ведётся повторение основных фактов, свойств на основе систематизации знаний.
3. Изучение нового материала – рассматривается ещё один способ решения квадратных уравнений – графический.
4. Закрепление изученного материала.
5. Практическая работа с использованием компьютеров.
6. Обогащение знаний – знакомство с траекториями движения космических аппаратов
7. Подведение итогов урока.
8. Творческое домашнее задание.
9. Рефлексия.

I. Мотивационная беседа.

Учитель: Как вы думаете, зачем надо изучать математику?

Ответ на этот вопрос вы найдёте, если узнаете, что означает в переводе с греческого слово “математика”. “Математика” – знание, наука. Именно поэтому, если человек был умен в математике, то это всегда означало высшую ступень учености. А умение правильно видеть и слышать – первый шаг к мудрости. Вот поэтому мне сегодня очень хочется, чтобы вы стали немного мудрее и расширили свои знания по математике. Итак, запишите в тетрадь число и тему урока.

Цель урока: познакомить вас еще с одним способом решения квадратных уравнений – графическим, закрепить этот способ решения практической работой с использованием компьютеров.

У вас находятся одинаковые карточки для учащегося (Приложение1) с трафаретом, состоящего из 10 комбинаций, которые обозначены римскими цифрами.

В каждую клетку нужно вписать букву или знак препинания. Тогда сложится фраза. Но на трафарете нет места для самого первого слова зашифрованной фразы. Это слово мы получим, решив графические уравнения. У нас получится крылатое изречение из романа А. С. Пушкина “Евгений Онегин”. Следует вам ответить на соответствующие тестовые задания I–X и вписать в трафарет знак или букву, которой обозначен верный ответ.

II. Актуализация опорных знаний. (Устная работа.)

1. Линию, являющуюся графиком функции у = х 2 , называют…

? ) – синусоидой; : ) – гиперболой; …) – параболой.

2. Составьте слово, назвав подряд буквы, соответствующие правильному ответу. Является ли функция у = х 2 возрастающей на отрезке [a; в], если:

е) а = – 3; в = 3;
к) а = 1; в = 4;
д) а = – 2; в = – 1;
а) а = 0; в = 0,5;
к) а = 9; в = 10;
б) а = –9; в = 10;

как

3. Назовите буквы, соответствующие точкам, принадлежащим графику функции у = х 2

много

4. Графиком функции у = является …

а) прямая; б) отрезок; в) гипербола; г) ветвь параболы.

5. Назовите буквы, которые соответствуют правильному ответу.

а) Какие из данных уравнений являются квадратными?

в) 5х + 1 = 0.
к) х 3 – 2х 2 + 1 = 0.
н) 5 – 8х = 0.
э) 2х 2 – 9х + 5 = 0.
з) 2х – = 0.
м) х 2 + 3х + 2 = 0.
т) 3х 2 – 5х – 8 = 0.
о) х 2 + 5х – 6 = 0.

этом

б) Какие из данных квадратных уравнений являются приведенными?

к) 2х 2 – 9х + 5 = 0.
в) х 2 – 4х 2 + 3 = 0.
о) 3х 2 + 5х + 2 = 0.
л) 3х 2 – 4х – 7 = 0.
ф) 3х 2 – 2х – 5 = 0.
к) х 2 + 6х + 8 = 0.
з) х 2 – 14х + 49 = 0.
у) х 2 – 10х + 25 = 0.
е) х 2 + 11х – 12 = 0.

звуке

III. Изучение нового материала.

Решим уравнение: х 2 + 2х – 3 = 0.
Какое это уравнение?
Как это уравнение можно решить?
Ответ: С помощью формул, с помощью теоремы Виета.

Можно его решить устно?
Ответ: Можно, по теореме Виета.

Какие же корни?
Ответ: –3 и 1.

Я сегодня покажу ещё один способ решения – графический. Представим данное уравнение в следующем виде: х 2 = – 2х + 3.

Чтобы решить данное уравнение, нужно найти такое значение х, при котором левая часть уравнения была бы равна правой. Введем две функции у1, равной левой части уравнения и у2, равной правой части уравнения. Теперь нужно найти такое значение х, при котором у1 = у2, т. е. общую точку, принадлежащую графику функции у1 и графику функции у2. Эта точка будет являться точкой пересечения графиков функций у1= х 2 и у2= –2х + 3. Абсцисса точки пересечения будет являться решением исходного уравнения.

В координатной плоскости построим графики функций у1 = х 2 и у2 = –2х + 3.

Для этого составим таблицы их значений.

у1 = х 2 – парабола

х0±1±2±3
у0149

у2 = –2х + 3 – прямая

х–31
у91

А(–3;9) и В(1;1) –точки пересечения. Абсциссы этих точек равны –3 и 1.

Значит х = –3 и х = 1 – решение уравнения х 2 + 2х – 3 =0

так) х = – 1 и х = 3
для) х = – 3 и х = 1
вот) х = – 5 и х = 0

для

Рассмотрим алгоритм решения.

1. дано уравнение х 2 + 2х – 3 = 0.
2. представим уравнение в следующем виде х 2 = – 2х + 3.
3. в одной системе координат строятся графики функций

4. абсциссы точек пересечения являются решением данного уравнения

IV. Закрепление изученного материала.

1). Решить уравнение х 2 – х – 2 = 0. x [-5; 5] с шагом 0,5 в программе MS Excel (Приложение 2, задание 2)

(Решение см. Слайд 24)

души) х = –2 и х = 1
школы) х = 3 и х = 1
сердца) х = 2 и х = – 1.

сердца

2). Решить самостоятельно.

а). х 2 – 2х – 8 = 0 x [–5; 5] с шагом 0,5

а) один ученик решает аналитически, с помощью теоремы Виета.
б) другой ученик решает графически в тетради.
в) класс решает в программе MS Excel. (Решение см. Приложение 3)

широкого) х = 5 и х = 1;
русского) х = 4 и х = – 2;
красного) х = 3 и х = – 1.

русского

б). 2х 2 + х – 3 = 0 x [–4; 4] с шагом 0,5

а) один ученик решает графически в тетради.
б) другой ученик решает аналитически по формуле для решения квадратных уравнений.
в) класс решает в программе MS Excel. (Решение см. Приложение 4)

слилось) х = 1 и х = –1,5;
расцвело) х = 3 и х = –2;
приснилось) х = –1 и х = 2.

слилось

Отвели свой взгляд направо,
Отвели свой взгляд налево,
Оглядели потолок,
Посмотрели все вперёд.
Раз – согнуться – разогнуться,
Два ─ согнуться – потянутся,
Три – в ладоши три хлопка,
Головою три кивка.
Пять и шесть тихо сесть.

V. Практическая работа.

(Класс разбивается на 9 групп.)

Каждая группа учащихся получает дифференцированные задания на карточках. (Приложение 5)

С помощью графиков нескольких функций, построенных на заданных промежутках в программе MS Excel получаются буквы: М; О; С; К; В; А.(Приложение 6 лист1–7) и фигуры: КИТ; ЗОНТИК; ОЧКИ. (Приложение 7 лист1–3).

Учитель: Какие буквы у вас получились?

Ответы учащихся: М О С К В А

Учитель: Получилась фраза А.С. Пушкина из романа “Евгений Онегин” “Москва… как много в этом звуке для сердца русского слилось”.

(Как часто в горестной разлуке,
В моей блуждающей судьбе,
Москва, я думал о тебе!
Москва … как много в этом звуке
Для сердца русского слилось!
Как много в нём отозвалось.)

Учитель: Что это за город Москва?
Это сердце нашей Родины, столица нашего государства.

VI. Обогащение знаний.

(Высвечивается слайд, на котором находится парабола и гипербола.)

Мы сегодня на уроке применяли эти два графика: параболу и гиперболу.

Я хочу вам сказать ребята, что окружающий нас мир тесно связан с математикой. Валерий Чкалов говорил: “Полёт–это математика”. Оказывается, траектории движения космических аппаратов описываются параболой, гиперболой, эллипсом. При первой космической скорости (7,91 км/с) космический аппарат движется по эллипсу относительно Земли. (на рис. орбита 3) При второй космической скорости (11,2 км/с) аппарат движется по параболе (на рис. орбита 4) и движется в пределах Солнечной системы. При третьей космической скорости (16,6 км/с) космические аппараты движутся по гиперболе (на рис. орбита5) и навсегда покидают пределы Солнечной системы. В 70-х годах ХХ века были запущены такие космические аппараты “Пионер-10”, “Пионер-11”,которые навсегда покинули Солнечную систему в поисках разумных цивилизаций во Вселенной. Они несут в себе платиновые пластинки, на которых нанесены силуэты мужчины и женщины на фоне космического корабля, Солнечная система и траектория “Пионера”, схема атома водорода и положение Солнца по отношению к наиболее ярким галактическим пульсарам.

VII. Подведение итогов урока.

Вы замечательно поработали на уроке. Проверив ваши работы и учитывая ваши ответы за устную работу, я поставила вам оценки в индивидуальную таблицу.

Каждый ученик класса принимал участие в уроке. Во время урока заполняется индивидуальная таблица, в которой виден результат его работы на уроке.

Ф.ИУстная работаПрактическая работаОбщая оценка

Надеюсь, этот материал вы не забудете. Помните слова французского инженера-физика Лауэ: “Образование есть то, что остается, когда все выученное уже забыто”. Думаю, что образование, которое вы получите, будет соответствовать времени, в котором мы живем. А чтобы это случилось на самом деле, предлагаю вам выполнить следующую творческую домашнюю работу.

VIII. Домашнее задание.

В конце урока проводится беседа, в которой выясняется:

– Что нового узнали на уроке?
– Понравился ли урок? (С помощью сигнальных карточек.)
– Что понравилось на уроке?

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:


    источники:

    http://urok.1sept.ru/articles/594584

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya