График функции уравнения вида x g x

Графическое решение квадратных уравнений. Алгоритм решения уравнения вида f(x)=g(x) графическим способом Рассмотрим две функции y=f (x) и y=g (x) Рассмотрим. — презентация

Презентация была опубликована 9 лет назад пользователемsc6-oo1065.ucoz.ru

Похожие презентации

Презентация на тему: » Графическое решение квадратных уравнений. Алгоритм решения уравнения вида f(x)=g(x) графическим способом Рассмотрим две функции y=f (x) и y=g (x) Рассмотрим.» — Транскрипт:

1 Графическое решение квадратных уравнений

2 Алгоритм решения уравнения вида f(x)=g(x) графическим способом Рассмотрим две функции y=f (x) и y=g (x) Рассмотрим две функции y=f (x) и y=g (x) Построим график функции y=f (x) Построим график функции y=f (x) Построим график функции y=g (x) Построим график функции y=g (x) Найдём координаты точек пересечения построенных графиков; абсциссы этих точек – корни уравнения f(x)=g(x) Найдём координаты точек пересечения построенных графиков; абсциссы этих точек – корни уравнения f(x)=g(x)

3 Решить уравнение: х 2 -2х-3=0 1. Рассмотрим функции у=х 2 -2х-3 и у=0 2. Построим график функции у=х 2 -2х-3 – функция квадратичная, графиком является парабола, ветви которой направлены вверх. а) Найдём координаты вершины параболы А(х 0 ;у 0 ): а=1; в=-2 Х0=Х0= У 0 = =-4 б) Осью симметрии является прямая х=1 3. Построим график функции у=0. Графиком данной функции является ось х. 4.Найдём координаты точек пересечения графиков функций:(-1;0) и (3;0). Значит решением уравнения являются их абсциссы. Ответ: -1;3.

5 Решить уравнение: х 2 -2х-3=0 Второй способ: х 2 -2х-3=0 к виду х 2 =2х+3 Преобразуем уравнение х 2 -2х-3=0 к виду х 2 =2х+3 1. Рассмотрим функции у=х 2 и у=2х+3 2. Построим график функции у=х 2 3. Построим график функции у=2х+3 – функция линейная, графиком является прямая 4. Найдём координаты точек пересечения: (-1;1) и (3;9). Значит решением данного уравнения являются абсциссы точек пересечения. Ответ: -1; 3.

7 Решить уравнение: х 2 -2х-3=0 Третий способ: Преобразуем уравнение к виду х 2 -3 = 2х. 1. Рассмотрим функции у = х 2 -3 и у = 2х. 2. Построим график функции у = х 2 -3 а) Данная функция получена из функции у = х 2 б) Построим график функции у = х 2 : в) Переместим начало системы координат на 3 единичных отрезка вниз вдоль оси у. 3. Построим график функции у = 2х – функция прямая пропорциональность, графиком является прямая, проходящая через начало координат. 4. Найдём координаты точек пересечения : (-1;-2) и (3;6). Решением уравнения являются их абсциссы. Ответ: -1; 3.

9 Проанализируем суть этих способов: Первый способ: Строят график функции у=ах 2 +вх+с и находят точки его пересечения с осью х. Первый способ: Строят график функции у=ах 2 +вх+с и находят точки его пересечения с осью х. Второй способ: Преобразуют уравнение к виду ах 2 =-вх-с, строят параболу у=ах 2 и прямую у=-вх-с, находят точки их пересечения(корнями уравнения служат абсциссы точек пересечения, если, разумеется, таковые имеются) Второй способ: Преобразуют уравнение к виду ах 2 =-вх-с, строят параболу у=ах 2 и прямую у=-вх-с, находят точки их пересечения(корнями уравнения служат абсциссы точек пересечения, если, разумеется, таковые имеются) Третий способ: Преобразуем уравнение к виду ах 2 +с=-вх, строят параболу у=ах 2 +с и прямую у=-вх; находят точки их пересечения Третий способ: Преобразуем уравнение к виду ах 2 +с=-вх, строят параболу у=ах 2 +с и прямую у=-вх; находят точки их пересечения

Графический способ решения уравнений в среде Microsoft Excel 2007

Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

Цели и задачи урока:

  • повторение изученных графиков функций;
  • повторение и закрепление графического способа решения уравнений;
  • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
  • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
  • формирование мышления, направленного на выбор оптимального решения;
  • формирование информационной культуры школьников.

Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

Объявление темы урока.

1. Устная работа (актуализация знаний).

Слайд 2 — Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

у = 6 — х; у = 2х + 3; у = (х + 3) 2 ; у = -(х — 4) 2 ; .

Слайд 3 Графический способ решения уравнений вида f(x)=0.

Корнями уравнения f(x)=0 являются значения х1, х2, точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).

Слайд 5 Графический способ решения уравнений вида f (x)=g (x).

Корнями уравнения f(x)=g(x) являются значения х1, х2, точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

Слайд 6 Найдите корни уравнения , используя графический способ решения уравнений (Рис. 5).

2. Объяснение нового материала. Практическая работа.

Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).

I. Графический способ решения уравнений вида f(x)=0 в Excel.

Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение —х 2 +5х-4=0.

Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; \найти значения х точек пересечения графика функции с осью абсцисс.

Выполнение задания можно разбить на этапы:

1 этап: Представление функции в табличной форме (рис. 6):

  • в ячейку А1 ввести текст Х, в ячейку A2Y;
  • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
  • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул — сама формула (Рис. 8):

  • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

2 этап: Построение диаграммы типа График.

  • выделить диапазон ячеек B2:V2;
  • на вкладке Вставка|Диаграммы|График выбрать вид График;
  • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси — откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

  • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

Интервал между делениями: 4;

Интервал между подписями: Единица измерения интервала: 4;

Положение оси: по делениям;

Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

  • самостоятельно изменить ширину и цвет линии для вертикальной оси;
  • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

Примерный результат работы приведен на рис. 10:

3 этап: Определение корней уравнения.

График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.

II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

Пример 2: Решить графическим способом уравнение .

Для этого: в одной системе координат построить графики функций у1= и у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.
  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1=воспользоваться встроенной функцией Корень (Рис. 11).
  • 2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);
  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.
  • Примерный результат работы приведен на Рис. 12:

    3 этап: Определение корней уравнения.

    Графики функций у1= и у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение имеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.

    Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

    Пример 3: Разберем метод Подбор параметра на примере решения уравнения —х 2 +5х-3=0.

    1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

    Построить график функции у=х 2 +5х-3, отредактировав полученные в Примере 1 формулы.

    • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
    • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

    Все изменения сразу отобразятся на графике.

    Примерный результат работы приведен на Рис. 13:

    2 этап: Определение приближенных значений корней уравнения.

    График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.

    По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

    1) Начать с поиска более точного значения меньшего корня.

    По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;

    В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
    • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

    Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

    При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная работа.

    Задание: Используя метода Подбор параметров, найти корни уравнения с точностью до 0,001.

    • ввести функцию у=и построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

    • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной работы.

    Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).

    5. Домашнее задание.

    Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.

    График функции уравнения вида x g x

    При решении уравнений этого вида очень многие школьники, прежде всего, находят ОДЗ: `f(x)>=0`, затем решают получившееся квадратное уравнение, проверяют после нахождения решений условие `f(x)>=0` и успокаиваются. Ответ может оказаться неверным. Почему? Потому что могут появиться “лишние” корни. Почему? Потому, что после возведения в квадрат решаются сразу два уравнения: f ( x ) = g ( x ) \sqrt=g(x) и f ( x ) = — g ( x ) \sqrt=-g(x) , но на разных промежутках числовой оси: f ( x ) = g ( x ) \sqrt=g(x) – там, где `g(x)>=0`, и f ( x ) = — g ( x ) \sqrt=-g(x) – там, где `g(x) =0`!

    Заметим, что уравнение `sqrt=g(x)` может иметь решение для `g(x)>=0`, но не имеет решений, если `g(x) =0`, `g(x)>=0`. то `f(x)=g(x)hArrf^2(x)=g^2(x)`.

    Так как уравнение `sqrt=g(x)` может иметь решение лишь при условии `g(x)>=0` (т. е. обе части в ОДЗ уравнения неотрицательны), то

    f ( x ) = g ( x ) ⇔ f ( x ) = g 2 ( x ) g ( x ) ≥ 0 . \sqrt=g(x)\Leftrightarrow\left\<\beginf(x)=g^2(x)\\g(x)\geq0.\end\right.(УРК1)

    Это очень важное условие равносильности.

    Во-первых, оно освобождает от необходимости исследовать, а после нахождения решений и проверять условие `f(x)>=0` – неотрицательности подкоренного выражения, т. к. это условие выполняется автоматически.

    Во-вторых, акцентирует внимание на проверке условия `g(x)>=0` неотрицательности правой части – это условие “отсекает” посторонние корни – корни уравнения `-sqrt=g(x)`. При этом сначала решается уравнение, а затем найденные корни подставляются в неравенство. Неравенство (за редким исключением, когда корни “плохие”) заранее решать не надо.

    Наше условие равносильности особенно полезно при решении тригонометрических уравнений, в которых нахождение ОДЗ связано с решением тригонометрических неравенств, что гораздо сложнее, чем решение тригонометрических уравнений. Проверку в тригонометрических уравнениях даже условия `g(x)>=0` не всегда просто сделать.

    При решении любых уравнений, где есть хотя бы один неравносильный переход, надо делать проверку, подставляя найденные корни в исходное уравнение!


    источники:

    http://urok.1sept.ru/articles/564361

    http://zftsh.online/articles/5296