График линейного уравнения с одним неизвестным

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Линейное уравнение с одной переменной

Тема урока: § 5. Линейное уравнение с одной переменной. Навык решения линейных уравнений проверяется на экзаменах ОГЭ и ЕГЭ и необходим для решения текстовых задач.

Существуют ли такие значения переменной $x$, при которых соответственные значения выражений $3x$ и $x+8$ равны? Чтобы ответить на этот вопрос, надо решить уравнение:

При $x$, равном $4$, значения левой и правой частей уравнения равны. Число $4$ называют решением или корнем данного уравнения.

Определение:
Корень уравнения с одной переменной — это число, обращающее данное уравнение в верное равенство.

Решить уравнение — значит найти множество всех его корней.

Линейное уравнение

Определение:
Каждое алгебраическое уравнение с одним неизвестным, степень которого равна единице называется линейным уравнением.

В общем виде линейное уравнение имеет вид:

Где $k$ и $b$ — произвольные числа.

Примеры линейных уравнений

Приведём несколько примеров линейных уравнений:

Уравнение $x+5=8$ имеет корень $3$. Этот корень единственный, так как при $x 3$ больше $8$.

Уравнение $(x+2)(x-1)(x-7)=0$ имеет три корня: $-2$, $1$ и $7$, так как каждое из этих чисел обращает уравнение в верное равенство, а при всех других значениях $x$ ни один из множителей (а значит, и их произведение) не равен нулю.

Уравнение $x+3=x-1$ совсем не имеет корней, так как при любых $x$ значение выражения, стоящего в левой части уравнения, на $4$ больше соответственного значения выражения, стоящего в правой части. Множество корней этого уравнения пустое.

Уравнение $x=|x|$ имеет бесконечное множество корней. Любое положительное число или нуль является его корнем.

Уравнение $5(x+8)=40+5x$ также имеет бесконечное множество корней, причем любое значение $x$ является его корнем, так как выражения $5(x+8)$ и $40+5x$ тождественно равны. О таком уравнении говорят, что оно удовлетворяется тождественно.

Заметим, что каждое из данных равенств имеет общую форму:

$$kx+b=0 \Leftrightarrow kx=-b$$

они внешне похожи друг на друга, где $x$ — переменная (неизвестное), $k$ и $b$ — произвольные числа.

Следующие уравнения не будут являться линейными, так как они не имеют вышеописанный вид.

Свойства линейных уравнений

Линейные уравнения обладают рядом специфических свойств, рассмотрим их:

Любое слагаемое можно переносить в противоположную сторону равенства, но при этом слагаемое меняет знак. Покажем на примере равенства:

$$x+2=0 \Rightarrow x=-2$$

Смена знака связана с тем, что мы вправе прибавлять к обоим частям уравнения одно и то же число (смысл уравнения от этого не меняется).

$$x+0=0-2 \Rightarrow x=-2$$

Каждую часть равенства можно умножать, делить на одно и то же число отличное от нуля (смысл уравнения от этого не меняется). Покажем на примере того же равенства, домножив обе части на число четыре:

$$x+2=0 \Rightarrow (x+2)\cdot 4=0\cdot 4$$

Равносильные уравнения

Рассмотрим три уравнения:

$x(x+2)(x-3)=0$ Уравнение (1) имеет два корня: $-2$ и $3$, а уравнение (2) — три корня: $0$, $-2$ и $3$. Каждый корень уравнения (1) является корнем уравнения (2), но не каждый корень уравнения (2) является корнем уравнения (1).

При $x=0$ второе уравнение обращается в верное равенство , а первое — нет.

Уравнение $x(x+2)=3(x+2)$ имеет два корня: $-2$ и $3$.

Каждое решение уравнения (3) является решением уравнения (1) и каждое решение уравнения (1) является решением уравнения (3). Такие уравнения называются равносильными.

Важно!
У равносильных уравнений множества их решений совпадают.

Понятие равносильности уравнений распространяется и на уравнения с несколькими переменными. Например, два уравнения с переменными $x$ и $y$ считаются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения служит решением первого.

Пусть первое уравнение $P(x)=0$, а второе $Q(x)=0$ и если они равносильны, то имеет место знак равносильности:

В дальнейшем мы будем часто использовать такую символику.

Свойства равенств

Можно ли, не решая уравнений $2x-5=9$ и $2x=14$, утверждать, что они равносильны? Ответить на этот вопрос помогут нам хорошо известные свойства равенств. Перечислим их:

Рефлексивность. Любое число равно самому себе: $a=a$.

Симметричность. Если одно число равно другому, то это второе число равно первому: если $a=b$, то $b=a$.

Транзитивность. Если первое число равно второму, а второе равно третьему, то первое число равно третьему: если $a=b$ и $b=c$, то $a=c$. Свойствами, аналогичными указанным свойствам равенств, обладают многие соотношения. Например, параллельность (в множестве прямых плоскости) обладает симметричностью и транзитивностью .

Действительно, если $a||b$, то $b||a$; если $a||b$ и $b||c$, то $a||c$. Равносильность уравнений обладает всеми тремя свойствами. В самом деле, каждое уравнение равносильно самому себе; если одно уравнение равносильно другому, то второе равносильно первому; если одно уравнение равносильно второму, а второе — третьему, то первое уравнение равносильно третьему.

Приведем еще два свойства равенств, которые нам понадобятся дальше:

Если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство: если $a=b$, то

Если обе части верного равенства умножить на одно и то же число, то получится верное равенство: если $a=b$, то

Примеры решения уравнений

Свойства равенств используются при решении уравнений. Покажем это на примере.

Задача 1.
Пусть нужно решить уравнение: $6x-42=0$

Прибавим к левой и правой частям уравнения число $42$ (перенесем $-42$ в правую часть уравнения с противоположным знаком).

Получим уравнение: $6x=42$

Если при некотором значении $x$ равенство верно, то верно и равенство которое мы получили, и, наоборот, если при некотором значении $x$ верно равенство которое мы получили, то верно и исходное равенство. Это следует из свойства 4. Значит, уравнения равносильны.

Умножим обе части уравнения на $\frac<1><6>$ (разделим на $6$). Получим уравнение: $x=7$

Из свойства 5. следует, что последние два уравнения равносильны:

$$6x=42 \Leftrightarrow x=7$$

Следовательно равносильны и уравнения (так как равносильность обладает свойством транзитивности): $6x-42=0 \Leftrightarrow x=7$

Значит число $7$ есть корень исходного уравнения.

Рассмотренный пример показывает, что перенос членов уравнения из одной его части в другую с противоположным знаком и умножение (или деление) обеих частей уравнения на неравное нулю число приводят к уравнению, равносильному данному.

Приведем все слагаемые левой части уравнения к общему знаменателю:

Домножим обе части равенства на $\frac<16><7>$ чтобы избавиться от коэффициента при неизвестном, получим:

Сократим числа $7$ и $16$, получим:

Общий вид решений линейного уравнения

Решим уравнение: $kx+b=0$

Очевидно, решение зависит от наших параметров $k$ и $b$, поэтому рассмотрим несколько сюжетов, которые встречаются при решении линейных уравнений.

Шаг 1.

Коэффициент при неизвестной $k$ будет равняться нулю, а свободный член $b$ отличным от нуля.

$$k=0, b\neq 0 \Rightarrow 0\cdot x=-b$$

Заметим, в этом случае не найдется такого числа $x$, что при подстановке его в уравнение — получится верное равенство. Т.к при умножении на 0 мы не получим число отличное от нуля, стало быть — решений нет. Обычно это записывается так: $$x\in \oslash$$ что переводится как: $x$ принадлежит пустому множеству.

Шаг 2.

Коэффициент при неизвестной и свободный член отличны от нуля:

$$k\neq 0, b\neq 0 \Rightarrow kx=-b \Rightarrow x=\frac<-b>$$

Т.е. $x$ принимает действительное и единственное решение в виде отношения двух чисел: $-b$ и $k$

Шаг 3.

Числа $k$ и $b$ принимают значения равное нулю, т.е:

$$k=0, b=0 \Rightarrow kx=-b \Rightarrow 0\cdot x=0$$

Очевидно, что какой бы $x$ мы не взяли — равенство будет верным, т.к, при умножении на 0 получим 0. Тогда говорят, что $x$ — любое число, либо $x$ принадлежит всем действительным числам. Запись имеет такой вид:

В данном случае решение можно записать несколькими способами, например с помощью двойного неравенства:

Задача №1.

Найдите корень уравнения: $0,9x-0,6(x-3)=2(0,2x-1,3)$

Раскроем скобки и приведем подобные.

Перенесем слагаемые содержащие неизвестную в одну часть, а остальные в другую.

Домножим обе части равенства на $10$, тогда получим:

Задача №2.

Решите уравнение: $-36(6x+1)=9(4-2x)$

Раскроем скобки в обеих частях равенства.

Перенесем переменные вправо, а остальные слагаемые влево.

Разделим обе части уравнения на $198$ и получим ответ:

Сократим дробь на $18$.

Задача №3.

Чему равен наибольший корень уравнения: $(1,8-0,3y)(2y+9)=0$?

Для решения уравнения нужно воспользоваться свойством произведения. Произведение равно нулю, тогда и только тогда, когда один из множителей равен нулю, а значит одно из выражений в скобках должно равнятся нулю. Рассмотрим первый случай:

После переноса слагаемых домножим обе части равенства на $10$ и поделим на $3$.

Теперь рассмотрим второй случай:

Разделим обе части равенства на $2$.

Как мы видим у нас получилось два корня, при которых уравнение обращается в $0$. Для ответа выберем наибольший из данных, т.е:

Задача №4.

Найдите корень уравнения:

Вспомним, что все наши действия должны быть направлены на приведение уравнения к виду: $x=…$ Поэтому домножим обе части равенства на общий знаменатель $12$, т.е на $4$ и $3$.

После сокращения слева на $4$, а справа на $3$ получим:

$$(3m+5)\cdot 3=(5m+1)\cdot 4$$

$$3m\cdot 3+5\cdot 3=5m\cdot 4+1\cdot 4$$

В данном случае $9m$ удобно перенести вправо, так как не придется избавляться от минуса. Сделаем перенос слагаемых, приведем подобные и получим ответ.

Задача №5.

При каком значении $a$ уравнение: $3ax=12-x$ имеет корень, равный числу $-9$?

Если подставить вместо переменной $x$ число $-9$, то получим $a$ при котором эта ситуация имеет место.

Обратим внимание на правую часть равенства и воспользуемся свойством:

Если перед скобками стоит знак минус, то при их раскрытии все знаки стоящие в скобках меняются на противоположные.

Разделим обе части уравнения на число $-27$, получим:

Сокращаем правую часть равенства на $3$ и получаем окончательный ответ.

Линейное уравнение с одной переменной (В.А. Тарасов)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы начнем изучение темы «Уравнения». Мы рассмотрим линейное уравнение с одной переменной в общем виде, а также на конкретных примерах. Кроме того, решим текстовые задачи.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Уравнения и неравенства»


источники:

http://reshu.su/algebra/05/

http://interneturok.ru/lesson/algebra/7-klass/matematicheskij-yazyk-matematicheskaya-model/lineynoe-uravnenie-s-odnoy-peremennoy-v-a-tarasov