График уравнения двух пересекающихся прямых

Пересечение прямых. Точка пересечения двух прямых

Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

Точка пересечения двух прямых на плоскости

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 y = -3 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (-3 x + 1) y = -3 x + 1 => 0 = 5 x — 2 y = -3 x + 1

Из первого уравнения найдем значение x

5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 x = 2 t + 1 y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2 t + 1) — 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

-3 t = 1 x = 2 t + 1 y = t => t = — 1 3 x = 2 t + 1 y = t

Подставим значение t во второе и третье уравнение

t = — 1 3 x = 2·(- 1 3 ) + 1 = — 2 3 + 1 = 1 3 y = — 1 3

Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , — 1 3 )

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2 x + 3 y = 0 x — 2 3 = y 4

Из второго уравнения выразим y через x

2 x + 3 y = 0 y = 4· x — 2 3

Подставим y в первое уравнение

2 x + 3·4· x — 2 3 = 0 y = 4· x — 2 3 => 2 x + 4·( x — 2) = 0 y = 4· x — 2 3 =>

2 x + 4 x — 8 = 0 y = 4· x — 2 3 => 6 x = 8 y = 4· x — 2 3 =>

x = 8 6 = 4 3 y = 4· x — 2 3 => x = 8 6 = 4 3 y = 4· 4/3 — 2 3 = 4· -2/3 3 = — 8 9

Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , — 8 9 )

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2 x — 1 y = 2 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Решение: Подставим координаты точки N в уравнения прямых.

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Точка пересечения двух прямых в пространстве

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Решение: Составим систему уравнений

x — 1 = a y — 1 = a z — 1 = a x — 3 -2 = b 2 — y = b z = b => x = a + 1 y = a + 1 z = a + 1 x — 3 -2 = b 2 — y = b z = b =>

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1 y = a + 1 z = a + 1 a + 1 — 3 -2 = b 2 — ( a + 1) = b a + 1 = b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 + (1 — a ) = b + b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = 1 1 — a = 1 b = 1 => x = a + 1 y = a + 1 z = a + 1 a — 2 = -2 a = 0 b = 1 =>

x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2 t — 3 y = t z = — t + 2 x = a + 1 y = 3 a — 2 z = 3

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2 t — 3 y = t z = — t + 2 2 t — 3 = a + 1 t = 3 a — 2 — t + 2 = 3 => x = 2 t — 3 y = t z = — t + 2 2 t = a + 4 t = 3 a — 2 t = -1 =>

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3 y = (-1) z = -(-1) + 2 2·(-1) = a + 4 -1 = 3 a — 2 t = -1 => x = -5 y = -1 z = 3 a = -6 a = 1 3 t = -1

Ответ. Так как -6 ≠ 1 3 , то прямые не пересекаются.

Исследование уравнений второго порядка

Преобразование координат в уравнении второго порядка.

В общей декартовой системе координат линия второго порядка может быть задана уравнением
$$
Ax^ <2>+ 2Bxy + Cy^ <2>+ 2Dx + 2Ey + F = 0,\label
$$
в котором коэффициенты \(A\), \(B\) и \(C\) не равны нулю одновременно. Исследуем множество точек, которые ему удовлетворяют, не предполагая заранее, что хоть одна такая точка существует. С этой целью мы будем менять систему координат так, чтобы уравнение стало возможно проще. С самого начала можно считать систему координат декартовой прямоугольной, так как при переходе к прямоугольной системе координат общий вид уравнения \eqref не изменится.

При повороте базиса декартовой прямоугольной системы координат на угол \(\varphi\) старые координаты точки \(x\), \(y\) будут связаны с ее новыми координатами \(x’\), \(y’\) формулами
$$
x = x’\cos \varphi-y’\sin \varphi,\\ y = x’\sin \varphi + y’\cos \varphi.\nonumber
$$
В новых координатах уравнение \eqref примет вид
$$
A(x’\cos \varphi-y’\sin \varphi)^ <2>+ 2B(x’\cos \varphi-y’\sin \varphi) \times \\ \times (x’\sin \varphi + y’\cos \varphi) + C(x’\sin \varphi + y’\cos \varphi) + … = 0.\nonumber
$$
Здесь многоточием обозначены члены первой степени относительно \(x’\), \(y’\) и свободный член, которые нет необходимости выписывать. Нас будет интересовать член с произведением \(x’y’\) в преобразованном уравнении. В невыписанные члены это произведение не входит, и мы подсчитаем, что половина коэффициента при \(x’y’\) есть
$$
B’ = -A\sin \varphi \cos \varphi + B(\cos^<2>\varphi-\sin^<2>\varphi) + C\sin \varphi \cos \varphi.\nonumber
$$
Если \(B = 0\), то поворачивать систему координат не будем. Если же \(B \neq 0\), то выберем угол \(\varphi\) так, чтобы \(B’\) обратилось в нуль.

Это требование приведет к уравнению
$$
2B \cos 2\varphi = (A-C)\sin 2\varphi.\label
$$
Если \(A = C\), то \(\cos 2\varphi = 0\), и можно положить \(\varphi = \pi/4\). Если же \(A \neq C\), то выбираем \(\varphi = \displaystyle\frac<1> <2>\operatorname \left[\frac<2B>\right]\). Для нас сейчас важно то, что хоть один такой угол обязательно существует. После поворота системы координат на этот угол линия будет иметь уравнение
$$
A’x’^ <\ 2>+ C’y’^ <\ 2>+ 2D’x’ + 2E’y’ + F’ = 0.\label
$$
Выражения для коэффициентов уравнения \eqref через коэффициенты \eqref подсчитать не трудно, но это не нужно. Теперь коэффициент при произведении переменных равен нулю, а остальные члены мы по-прежнему считаем произвольными.

Если в уравнение \eqref входит с ненулевым коэффициентом квадрат одной из координат, то при помощи переноса начала координат вдоль соответствующей оси можно обратить в нуль член с первой степенью этой координаты.

В самом деле, пусть, например, \(A’ \neq 0\). Перепишем \eqref в виде
$$
A’\left(x’^ <\ 2>+ \frac<2D’>x’ + \frac>>\right) + C’y’^ <\ 2>+ 2E’y’ + F’-\frac = 0.\nonumber
$$
Если мы сделаем перенос начала координат, определяемый формулами \(x″ = x’ + D’/A’\), \(y″ = y’\), то уравнение приведется к виду
$$
A’x″^ <\ 2>+ C’y″^ <\ 2>+ 2E’y″ + F″ = 0,\nonumber
$$
как и требовалось.

Канонические виды уравнений второго порядка.

Предположим, что \(A’C’ \neq 0\), то есть оба коэффициента отличны от нуля. Согласно утверждению 1 при помощи переноса начала координат уравнение приведется к виду
$$
A’x″^ <\ 2>+ C’y″^ <\ 2>+ F″ = 0.\label
$$

Могут быть сделаны следующие предположения относительно знаков коэффициентов в этом уравнении.

Случай A’C’ > 0.

Если \(A’C’ > 0\), то коэффициенты \(A’\) и \(C’\) имеют один знак. Для \(F″\) имеются следующие три возможности.

    Знак \(F″\) противоположен знаку \(A’\) и \(C’\). Перенесем \(F″\) в другую часть равенства и разделим на него. Уравнение примет вид
    $$
    \frac>> + \frac>> = 1,\label
    $$
    где \(a^ <2>= -F″/A’\), \(b^ <2>= -F″/C’\). Можно считать, что в этом уравнении \(a > 0\), \(b > 0\) и \(a \geq b\). Действительно, если последнее условие не выполнено, то можно сделать дополнительную замену координат
    $$
    x^ <*>= y″,\ y^ <*>= x″.\label
    $$

Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением \eqref при условии \(a \geq b\), называется эллипсом, уравнение называется каноническим уравнением эллипса, а система координат — его канонической системой координат.

При \(a = b\) уравнение \eqref есть уравнение окружности радиуса \(a\). Таким образом, окружность — частный случай эллипса.

  • Знак \(F″\) совпадает с общим знаком \(A″\) и \(C″\). Тогда аналогично предыдущему мы можем привести уравнение к виду
    $$
    \frac>> + \frac>> = -1,\label
    $$
    Этому уравнению не удовлетворяют координаты ни одной точки. Уравнение, которое приводится к каноническому виду \eqref, называется уравнением мнимого эллипса.
  • \(F″ = 0\). Уравнение имеет вид
    $$
    a^<2>x″^ <\ 2>+ c^<2>y″^ <\ 2>= 0.\label
    $$
    Ему удовлетворяет только одна точка \(x″ = 0\), \(y″ = 0\). Уравнение, приводящееся к каноническому виду \eqref, называется уравнением пары мнимых пересекающихся прямых. Основанием для этого названия служит сходство с приведенным ниже уравнением \eqref.
  • Случай A’C’ Определение.

    Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением \eqref, называется гиперболой, уравнение называется каноническим уравнением гиперболы, а система координат — ее канонической системой координат.

    Случай \(A’C’ = 0\).

    Допустим теперь, что \(A’C’ = 0\), и, следовательно, один из коэффициентов \(A’\) или \(C’\) равен нулю. В случае необходимости, делая замену \eqref, мы можем считать, что \(A’ = 0\). При этом \(C \neq 0\), так как иначе порядок уравнения был бы меньше двух. Используя утверждение 1, мы приведем уравнение к виду
    $$
    C’y″^ <\ 2>+ 2D’x″ + F″ = 0.\nonumber
    $$

    Пусть \(D’ \neq 0\). Сгруппируем члены следующим образом:
    $$
    C’y″^ <\ 2>+ 2D’\left(x″ + \frac<2D’>\right) = 0.\nonumber
    $$
    Перенесем начало координат вдоль оси абсцисс в соответствии с формулами перехода \(x^ <*>= x″ + F″/2D’\), \(y^ <*>= y″\). Тогда уравнение примет вид
    $$
    C″y^ <*2>+ 2D’x^ <*>= 0,\nonumber
    $$
    или
    $$
    y^ <*2>= 2px^<*>,\label
    $$
    где \(p = -D’/C″\). Мы можем считать, что \(p > 0\), так как в противном случае можно сделать дополнительную замену координат, изменяющую направление оси абсцисс: \(\tilde = -x^<*>\), \(\tilde = y^<*>\).

    Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением \eqref при условии \(p > 0\), называется параболой, уравнение называется каноническим уравнением параболы, а система координат — ее канонической системой координат.

    Допустим, что \(D’ = 0\). Уравнение имеет вид \(C’y″^ <\ 2>+ F″ = 0\). Относительно \(F″\) есть следующие три возможности.

    1. Если \(C’F″ 0\) знаки \(C’\) и \(F″\) совпадают. Разделив на \(C’\), приведем уравнение к виду
      $$
      y″^ <\ 2>+ a^ <2>= 0.\label
      $$
      Этому уравнению не удовлетворяют координаты ни одной точки. Уравнение, приводящееся к каноническому виду \eqref, называют уравнением пары мнимых параллельных прямых.
    2. Остался последний случай \(F″ = 0\). После деления на \(C’\) уравнение принимает вид
      $$
      y″^ <\ 2>= 0.\label
      $$
      Это уравнение эквивалентно уравнению \(y″ = 0\), и потому определяет прямую линию. Уравнение, приводящееся к каноническому виду \eqref, называется уравнением пары совпавших прямых.

    Теперь мы можем объединить всё вместе.

    Пусть в декартовой системе координат задано уравнение второго порядка \eqref.

    Тогда существует такая декартова прямоугольная система координат, в которой это уравнение принимает один из следующих девяти канонических видов:

    1. Уравнение эллипса.
      $$
      \frac>> + \frac>> = 1;\nonumber
      $$
    2. Мнимый эллипс. Данному уравнению не удовлетворяет ни одна точка.
      $$
      \frac>> + \frac>> = -1;\nonumber
      $$
    3. Уравнение пары мнимых пересекающихся прямых (точка).
      $$
      a^<2>x^ <2>+ c^<2>y^ <2>= 0;\nonumber
      $$
    4. Уравнение гиперболы.
      $$
      \frac>>-\frac>> = 1;\nonumber
      $$
    5. Пересекающиеся прямые.
      $$
      a^<2>x^<2>-c^<2>y^ <2>= 0;\nonumber
      $$
    6. Уравнение параболы.
      $$
      y^ <2>= 2px;\nonumber
      $$
    7. Пара параллельных прямых.
      $$
      y^<2>-a^ <2>= 0;\nonumber
      $$
    8. Пара мнимых параллельных прямых. Данному уравнению не удовлетворяет ни одна точка.
      $$
      y^ <2>+ a^ <2>= 0;\nonumber
      $$
    9. Прямая (пара совпавших прямых).
      $$
      y^ <2>= 0.\nonumber
      $$

    Пересечение прямых, угол и координаты пересечения

    IP76 > Пересечение прямых, угол и координаты пересечения

    Не такая тривиальная задача, скажу я вам. Всякий раз, когда возникает необходимость посчитать координату пересечения пары прямых, каждая из которых задана парой точек, снова беру блокнот и вывожу пару формул. И всякий раз – блин, ну это уже когда-то было, опять надо что-то делать с параллельными прямыми, опять появляется пакостная строго вертикальна линия, когда на (x1-x2) никак не разделить и т.д.

    Поэтому – в подборку теории и практики, пригодится, сэкономим блокнот, спасем дерево.

    Коэффициенты А, B, C

    Все помним со школы формулу:

    Тоже самое, но с претензией на образование (некоторые индивидуумы утверждают, что существует такая, и только такая, и никакая другая, формулировка):

    Те же фаберже, только сбоку.

    В теории надо составить и решить систему уравнений для первой и второй линии, где переменными будут X и Y точки пересечения.

    Загвоздка в том, что мы не знаем коэффициенты для обеих линий.

    В нашем случае известны координаты двух точек, по которым проходит линия. Поэтому мне, как последователю геометрического агностицизма, более привлекательная следующая формула:

    Путем несложных операций приходим к следующей записи:

    Глядя на вариант в исполнении высшего образования, получаем следующие формулы для нахождения коэффициентов:

    Пока все идет отлично, нигде вероятного деления на ноль не встретилось.

    Итак, мы можем легко найти два набора коэффициентов для первой и второй прямых. Переходим к системе уравнений.

    Система уравнений

    Как правило, подобная система уравнений решается путем выражения одной переменной через другую, подстановкой во второе уравнение, получая таким образом уравнение одной переменной. Далее переменная находится, подставляется, решается. Или определяется, что система решения не имеет.

    Но нас интересует метод Крамера. Потому что с помощью этого метода можно получить сразу значения для обеих переменных, без дополнительных телодвижений.

    Сразу же запишем метод под нашу систему.

    Имеем следующую систему:

    Исходя из метода, решение выглядит так:

    Ага! Вот и возможное деление на ноль, скажете вы. И правильно! В этой, в высшей степени непозволительной ситуации, когда знаменатель равен нулю, решения нет, прямые либо параллельны, либо совпадают (что, впрочем, частный случай параллельности). В коде, естественно, этот момент надо учитывать.

    Практика 1

    Частные случаи

    • Прямые параллельны: ∆ab = 0
      • (A1B2 – B1A2 = 0);
    • Прямые совпадают: ∆ab = ∆X = ∆Y = 0
      • (A1B2 – B1A2 = 0) И (A1C2 — A2C1 = 0) И (C1B2 -B1C2 = 0);
    • Прямые перпендикулярны:
      • (A1 A2 + B1 B2 = 0).

    Рис.2. Пересечение перпендикулярных прямых Рис.3. Параллельные прямые не пересекаются

    Принадлежность точки отрезку

    В общем случае, чтобы определить принадлежность точки отрезку, надо установить две вещи:

    1. Точка принадлежит прямой, проходящей через конечные точки отрезка. Для этого достаточно подставить значение X и Y в уравнение прямой и проверить получившееся равенство. В нашем случае, этот пункт уже выполнен, т.к. точка пересечения априори принадлежит обеим прямым.
    2. Проверить факт нахождения точки между концами отрезка.

    Займемся пунктом 2. Данный факт можно установить двумя способами:

    • Логически, т.е. (x1 = x >= x2). На случай «вертикальности» линии добавить проверку на Y:
      • (y1 = y >= y2).
    • Арифметически. Сумма отрезков |x-x1| + |x-x2| должна быть равна длине отрезка |x1-x2|. Аналогично, на случай «вертикальности» , добавить проверку:
      • |y-y1| + |y-y2| = |y1-y2|

    Практика показывает, что арифметический способ быстрее примерно в 3 раза. Когда-то я считал, что операции сравнения самые быстрые. Это давно уже не так.

    Задача нахождения принадлежности точки P(x,y) отрезку, заданного двумя точками с координатами P1(x1, y1) и P2(x2, y2) подробно рассмотрена в отдельной статье.

    Угол пересечения прямых

    Угол пересечения прямых — это угол пересечения направляющих векторов. Т.е., взяв уже знакомые ранее точки p1 и p2, получим направляющий вектор V(p1,p2), и аналогично второй вектор M(p3,p4). В теории мы должны вычислить достаточно «затратную» функцию, с корнями, квадратами, дробями и арккосинусом.

    Давайте не будем останавливаться на ней, она долгая, нудная и в нашем случае ненужная. Рассмотрим вектор:

    Рис.4. Вектор V(p1,p2)

    α — угол наклона вектора к оси X, который можно найти, как:

    Что-то знакомое? Да это ни что иное, как коэффициенты в уравнении прямой от образованных фанатов. Может они и правы в своем испепеляющем фанатизме…

    Одним словом, коэффициенты (расстояния) у нас уже есть по обеим прямым.

    Рис.5. Пересекающиеся вектор V(p1,p2) и вектор M(p3,p4)

    Судя по рисунку, угол между векторами, это сумма углов наклона векторов к оси X. Ммм… не совсем так, на самом деле это разность.

    Рис.6. Пересекающиеся векторы в положительной Y

    По рисунку явно видно, что угол между векторам это γ = (βα).

    В предыдущем примере все правильно, просто знаки углов разные, т.к. находятся по разные стороны от оси X, а формула работает та же.

    От теории к практике

    Теперь в плане практического применения. Мне нужно точно знать, откуда, куда и в каком направлении этот угол. В теории, углом между прямыми считается наименьший из пары γ и (180-γ). Так вот, нам это не надо. Какой угол получится – такой нам и нужен.

    Поэтому, под углом между векторами понимаем угол от вектора V(p1,p2) к вектору M(p3,p4). Если знак угла – отрицательный, понимаем, что он против часовой стрелки, иначе – по часовой стрелке.

    Следует заметить, что, зная коэффициенты, для нахождения угла пересечения, координаты уже не нужны. Листинг таков:


    источники:

    http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/second-order-equation/

    http://ip76.ru/theory-and-practice/cross-lines/