Графики линейных уравнений с одной переменной

Линейное уравнение с одной переменной

Тема урока: § 5. Линейное уравнение с одной переменной. Навык решения линейных уравнений проверяется на экзаменах ОГЭ и ЕГЭ и необходим для решения текстовых задач.

Существуют ли такие значения переменной $x$, при которых соответственные значения выражений $3x$ и $x+8$ равны? Чтобы ответить на этот вопрос, надо решить уравнение:

При $x$, равном $4$, значения левой и правой частей уравнения равны. Число $4$ называют решением или корнем данного уравнения.

Определение:
Корень уравнения с одной переменной — это число, обращающее данное уравнение в верное равенство.

Решить уравнение — значит найти множество всех его корней.

Линейное уравнение

Определение:
Каждое алгебраическое уравнение с одним неизвестным, степень которого равна единице называется линейным уравнением.

В общем виде линейное уравнение имеет вид:

Где $k$ и $b$ — произвольные числа.

Примеры линейных уравнений

Приведём несколько примеров линейных уравнений:

Уравнение $x+5=8$ имеет корень $3$. Этот корень единственный, так как при $x 3$ больше $8$.

Уравнение $(x+2)(x-1)(x-7)=0$ имеет три корня: $-2$, $1$ и $7$, так как каждое из этих чисел обращает уравнение в верное равенство, а при всех других значениях $x$ ни один из множителей (а значит, и их произведение) не равен нулю.

Уравнение $x+3=x-1$ совсем не имеет корней, так как при любых $x$ значение выражения, стоящего в левой части уравнения, на $4$ больше соответственного значения выражения, стоящего в правой части. Множество корней этого уравнения пустое.

Уравнение $x=|x|$ имеет бесконечное множество корней. Любое положительное число или нуль является его корнем.

Уравнение $5(x+8)=40+5x$ также имеет бесконечное множество корней, причем любое значение $x$ является его корнем, так как выражения $5(x+8)$ и $40+5x$ тождественно равны. О таком уравнении говорят, что оно удовлетворяется тождественно.

Заметим, что каждое из данных равенств имеет общую форму:

$$kx+b=0 \Leftrightarrow kx=-b$$

они внешне похожи друг на друга, где $x$ — переменная (неизвестное), $k$ и $b$ — произвольные числа.

Следующие уравнения не будут являться линейными, так как они не имеют вышеописанный вид.

Свойства линейных уравнений

Линейные уравнения обладают рядом специфических свойств, рассмотрим их:

Любое слагаемое можно переносить в противоположную сторону равенства, но при этом слагаемое меняет знак. Покажем на примере равенства:

$$x+2=0 \Rightarrow x=-2$$

Смена знака связана с тем, что мы вправе прибавлять к обоим частям уравнения одно и то же число (смысл уравнения от этого не меняется).

$$x+0=0-2 \Rightarrow x=-2$$

Каждую часть равенства можно умножать, делить на одно и то же число отличное от нуля (смысл уравнения от этого не меняется). Покажем на примере того же равенства, домножив обе части на число четыре:

$$x+2=0 \Rightarrow (x+2)\cdot 4=0\cdot 4$$

Равносильные уравнения

Рассмотрим три уравнения:

$x(x+2)(x-3)=0$ Уравнение (1) имеет два корня: $-2$ и $3$, а уравнение (2) — три корня: $0$, $-2$ и $3$. Каждый корень уравнения (1) является корнем уравнения (2), но не каждый корень уравнения (2) является корнем уравнения (1).

При $x=0$ второе уравнение обращается в верное равенство , а первое — нет.

Уравнение $x(x+2)=3(x+2)$ имеет два корня: $-2$ и $3$.

Каждое решение уравнения (3) является решением уравнения (1) и каждое решение уравнения (1) является решением уравнения (3). Такие уравнения называются равносильными.

Важно!
У равносильных уравнений множества их решений совпадают.

Понятие равносильности уравнений распространяется и на уравнения с несколькими переменными. Например, два уравнения с переменными $x$ и $y$ считаются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения служит решением первого.

Пусть первое уравнение $P(x)=0$, а второе $Q(x)=0$ и если они равносильны, то имеет место знак равносильности:

В дальнейшем мы будем часто использовать такую символику.

Свойства равенств

Можно ли, не решая уравнений $2x-5=9$ и $2x=14$, утверждать, что они равносильны? Ответить на этот вопрос помогут нам хорошо известные свойства равенств. Перечислим их:

Рефлексивность. Любое число равно самому себе: $a=a$.

Симметричность. Если одно число равно другому, то это второе число равно первому: если $a=b$, то $b=a$.

Транзитивность. Если первое число равно второму, а второе равно третьему, то первое число равно третьему: если $a=b$ и $b=c$, то $a=c$. Свойствами, аналогичными указанным свойствам равенств, обладают многие соотношения. Например, параллельность (в множестве прямых плоскости) обладает симметричностью и транзитивностью .

Действительно, если $a||b$, то $b||a$; если $a||b$ и $b||c$, то $a||c$. Равносильность уравнений обладает всеми тремя свойствами. В самом деле, каждое уравнение равносильно самому себе; если одно уравнение равносильно другому, то второе равносильно первому; если одно уравнение равносильно второму, а второе — третьему, то первое уравнение равносильно третьему.

Приведем еще два свойства равенств, которые нам понадобятся дальше:

Если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство: если $a=b$, то

Если обе части верного равенства умножить на одно и то же число, то получится верное равенство: если $a=b$, то

Примеры решения уравнений

Свойства равенств используются при решении уравнений. Покажем это на примере.

Задача 1.
Пусть нужно решить уравнение: $6x-42=0$

Прибавим к левой и правой частям уравнения число $42$ (перенесем $-42$ в правую часть уравнения с противоположным знаком).

Получим уравнение: $6x=42$

Если при некотором значении $x$ равенство верно, то верно и равенство которое мы получили, и, наоборот, если при некотором значении $x$ верно равенство которое мы получили, то верно и исходное равенство. Это следует из свойства 4. Значит, уравнения равносильны.

Умножим обе части уравнения на $\frac<1><6>$ (разделим на $6$). Получим уравнение: $x=7$

Из свойства 5. следует, что последние два уравнения равносильны:

$$6x=42 \Leftrightarrow x=7$$

Следовательно равносильны и уравнения (так как равносильность обладает свойством транзитивности): $6x-42=0 \Leftrightarrow x=7$

Значит число $7$ есть корень исходного уравнения.

Рассмотренный пример показывает, что перенос членов уравнения из одной его части в другую с противоположным знаком и умножение (или деление) обеих частей уравнения на неравное нулю число приводят к уравнению, равносильному данному.

Приведем все слагаемые левой части уравнения к общему знаменателю:

Домножим обе части равенства на $\frac<16><7>$ чтобы избавиться от коэффициента при неизвестном, получим:

Сократим числа $7$ и $16$, получим:

Общий вид решений линейного уравнения

Решим уравнение: $kx+b=0$

Очевидно, решение зависит от наших параметров $k$ и $b$, поэтому рассмотрим несколько сюжетов, которые встречаются при решении линейных уравнений.

Шаг 1.

Коэффициент при неизвестной $k$ будет равняться нулю, а свободный член $b$ отличным от нуля.

$$k=0, b\neq 0 \Rightarrow 0\cdot x=-b$$

Заметим, в этом случае не найдется такого числа $x$, что при подстановке его в уравнение — получится верное равенство. Т.к при умножении на 0 мы не получим число отличное от нуля, стало быть — решений нет. Обычно это записывается так: $$x\in \oslash$$ что переводится как: $x$ принадлежит пустому множеству.

Шаг 2.

Коэффициент при неизвестной и свободный член отличны от нуля:

$$k\neq 0, b\neq 0 \Rightarrow kx=-b \Rightarrow x=\frac<-b>$$

Т.е. $x$ принимает действительное и единственное решение в виде отношения двух чисел: $-b$ и $k$

Шаг 3.

Числа $k$ и $b$ принимают значения равное нулю, т.е:

$$k=0, b=0 \Rightarrow kx=-b \Rightarrow 0\cdot x=0$$

Очевидно, что какой бы $x$ мы не взяли — равенство будет верным, т.к, при умножении на 0 получим 0. Тогда говорят, что $x$ — любое число, либо $x$ принадлежит всем действительным числам. Запись имеет такой вид:

В данном случае решение можно записать несколькими способами, например с помощью двойного неравенства:

Задача №1.

Найдите корень уравнения: $0,9x-0,6(x-3)=2(0,2x-1,3)$

Раскроем скобки и приведем подобные.

Перенесем слагаемые содержащие неизвестную в одну часть, а остальные в другую.

Домножим обе части равенства на $10$, тогда получим:

Задача №2.

Решите уравнение: $-36(6x+1)=9(4-2x)$

Раскроем скобки в обеих частях равенства.

Перенесем переменные вправо, а остальные слагаемые влево.

Разделим обе части уравнения на $198$ и получим ответ:

Сократим дробь на $18$.

Задача №3.

Чему равен наибольший корень уравнения: $(1,8-0,3y)(2y+9)=0$?

Для решения уравнения нужно воспользоваться свойством произведения. Произведение равно нулю, тогда и только тогда, когда один из множителей равен нулю, а значит одно из выражений в скобках должно равнятся нулю. Рассмотрим первый случай:

После переноса слагаемых домножим обе части равенства на $10$ и поделим на $3$.

Теперь рассмотрим второй случай:

Разделим обе части равенства на $2$.

Как мы видим у нас получилось два корня, при которых уравнение обращается в $0$. Для ответа выберем наибольший из данных, т.е:

Задача №4.

Найдите корень уравнения:

Вспомним, что все наши действия должны быть направлены на приведение уравнения к виду: $x=…$ Поэтому домножим обе части равенства на общий знаменатель $12$, т.е на $4$ и $3$.

После сокращения слева на $4$, а справа на $3$ получим:

$$(3m+5)\cdot 3=(5m+1)\cdot 4$$

$$3m\cdot 3+5\cdot 3=5m\cdot 4+1\cdot 4$$

В данном случае $9m$ удобно перенести вправо, так как не придется избавляться от минуса. Сделаем перенос слагаемых, приведем подобные и получим ответ.

Задача №5.

При каком значении $a$ уравнение: $3ax=12-x$ имеет корень, равный числу $-9$?

Если подставить вместо переменной $x$ число $-9$, то получим $a$ при котором эта ситуация имеет место.

Обратим внимание на правую часть равенства и воспользуемся свойством:

Если перед скобками стоит знак минус, то при их раскрытии все знаки стоящие в скобках меняются на противоположные.

Разделим обе части уравнения на число $-27$, получим:

Сокращаем правую часть равенства на $3$ и получаем окончательный ответ.

График линейной функции, его свойства и формулы

О чем эта статья:

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

если х = 0, то у = -2;

если х = 2, то у = -1;

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

Таким образом, нам надо построить график функции y = -4x — 10

Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Вычтем из второго уравнения системы первое, и получим k = 3.

Подставим значение k в первое уравнение системы, и получим b = -2.

Ответ: уравнение прямой y = 3x — 2.

Графики уравнений

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы подробно рассмотрим построение графиков уравнений. Вначале вспомним, что такое рациональное уравнение и множество его решений, образующее график уравнения. Подробно рассмотрим график линейного уравнения и свойства линейной функции, научимся читать графики. Далее рассмотрим график квадратного уравнения и свойства квадратичной функции. Рассмотрим гиперболическую функцию и ее график и график уравнения окружности. Далее перейдем к построению и изучению совокупности графиков.


источники:

http://skysmart.ru/articles/mathematic/grafik-linejnoj-funkcii

http://interneturok.ru/lesson/algebra/9-klass/sistemy-uravneniy/grafiki-uravneniy