Граничные условия для уравнения пуассона

Численные методы решения уравнений эллиптического типа

Введение

Наиболее распространённым уравнением эллиптического типа является уравнение Пуассона.
К решению этого уравнения сводятся многие задачи математической физики, например задачи о стационарном распределении температуры в твердом теле, задачи диффузии, задачи о распределении электростатического поля в непроводящей среде при наличии электрических зарядов и многие другие.

Для решения эллиптических уравнений в случае нескольких измерений используют численные методы, позволяющие преобразовать дифференциальные уравнения или их системы в системы алгебраических уравнений. Точность решения опреде­ляется шагом координатной сетки, количеством итераций и разрядной сеткой компьютера [1]

Цель публикации получить решение уравнения Пуассона для граничных условий Дирихле и Неймана, исследовать сходимость релаксационного метода решения на примерах.

Уравнение Пуассона относится к уравнениям эллиптического типа и в одномерном случае имеет вид [1]:

(1)

где x – координата; u(x) – искомая функция; A(x), f(x) – некоторые непрерывные функции координаты.

Решим одномерное уравнение Пуассона для случая А = 1, которое при этом принимает вид:

(2)

Зададим на отрезке [xmin, xmax] равномерную координатную сетку с шагом ∆х:

(3)

Граничные условия первого рода (условия Дирихле) для рассматривае­мой задачи могут быть представлены в виде:

(4)

где х1, xn – координаты граничных точек области [xmin, xmax]; g1, g2 – некоторые
константы.

Граничные условия второго рода (условия Неймана) для рассматривае­мой задачи могут быть представлены в виде:

(5)

Проводя дискретизацию граничных условий Дирихле на равномерной координатной сетке (3) с использованием метода конечных разностей, по­лучим:

(6)

где u1, un – значения функции u(x) в точках x1, xn соответственно.

Проводя дискретизацию граничных условий Неймана на сетке (3), по­лучим:

(7)

Проводя дискретизацию уравнения (2) для внутренних точек сетки, по­лучим:

(8)

где ui, fi – значения функций u(x), f(x) в точке сетки с координатой xi.

Таким образом, в результате дискретизации получим систему линейных алгебраических уравнений размерностью n, содержащую n – 2 уравнения вида (8) для внутренних точек области и уравнения (6) и (7) для двух граничных точек [1].

Ниже приведен листинг на Python численного решения уравнения (2) с граничными условиями (4) – (5) на координатной сетке (3).

Разработанная мною на Python программа удобна для анализа граничных условий.Приведенный алгоритм решения на Python использует функцию Numpy — u=linalg.solve(a,b.T).T для решения системы алгебраических уравнений, что повышает быстродействие при квадратной матрице . Однако при росте числа измерений необходимо переходить к использованию трех диагональной матрицы решение для которой усложняется даже для очень простой задачи, вот нашёл на форуме такой пример:

Программа численного решения на равномерной по каждому направлению сетки задачи Дирихле для уравнения конвекции-диффузии

(9)

Используем аппроксимации центральными разностями для конвективного слагаемого и итерационный метод релаксации.для зависимость скорости сходимости от параметра релаксации при численном решении задачи с /(х) = 1 и 6(х) = 0,10. В сеточной задаче:

(10)

Представим матрицу А в виде суммы диагональной, нижней треугольной и верхней треугольных матриц:

(10)

Метод релаксации соответствует использованию итерационного метода:

(11)

При \ говорят о верхней релаксации, при — о нижней релаксации.

На графике показана зависимость числа итераций от параметра релаксации для уравнения Пуассона (b(х) = 0) и уравнения конвекции-диффузии (b(х) = 10). Для сеточного уравнения Пуассона оптимальное значении параметра релаксации находится аналитически, а итерационный метод сходиться при .

  1. Приведено решение эллиптической задачи на Python с гибкой системой установки граничных условий
  2. Показано что метод релаксации имеет оптимальный диапазон () параметра релаксации.

Ссылки:

  1. Рындин Е.А. Методы решения задач математической физики. – Таганрог:
    Изд-во ТРТУ, 2003. – 120 с.
  2. Вабищевич П.Н.Численные методы: Вычислительный практикум. — М.: Книжный дом
    «ЛИБРОКОМ», 2010. — 320 с.

Уравнение Пуассона и математическая постановка задач электростатики

Существует большое количество случаев, когда самым удобным методом нахождения напряженности поля считается решение дифференциального уравнения для потенциала. После его получения применим в качестве основы теорему Остроградского-Гаусса в дифференциальной форме:

где ρ является плотностью распределения заряда, ε 0 — электрической постоянной, d i v E → = ∇ → E → = ∂ E x ∂ x + ∂ E y ∂ y + ∂ E z ∂ z — дивергенцией вектора напряженности и выражением, связывающим напряженность поля и потенциал.

Произведем подстановку ( 2 ) в ( 1 ) :

Учитывая, что d i v g r a d φ = ∇ 2 φ = ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 + ∂ 2 φ ∂ z 2 , где ∆ = ∇ 2 — это оператор Лапласа, равенство ( 3 ) принимает вид:

Выражение ( 4 ) получило название уравнения Пуассона для вакуума. При отсутствующих зарядах запишется как уравнение Лапласа:

После нахождения потенциала переходим к вычислению напряженности, используя ( 2 ) . Решения уравнения Пуассона должны удовлетворять требованиям:

  • значение потенциала как непрерывная функция;
  • потенциал должен быть конечной функцией;
  • производные потенциала как функции по координатам должны быть конечными.

При наличии сосредоточенных зарядов в объеме V , решение уравнения ( 4 ) будет выражаться для потенциала вида:

Общая задача электростатики сводится к нахождению решения дифференциального уравнения, то есть уравнения Пуассона, удовлетворяющего вышеперечисленным требованиям. Теоретические вычисления известны для небольшого количества частных случаев. Если возможно подобрать функцию φ , удовлетворяющую условиям, то она является единственным решением.

В таких задачах не всегда необходимо задавать заряды или потенциалы во всем пространстве. Для нахождения электрического поля в полости, окруженной проводящей оболочкой, достаточно вычислить поле тел, находящихся внутри нее.

Любое решение уравнения Пуассона ограниченной области может быть определено краевыми условиями, накладывающимися на поведение решения. Границы перехода из одной среды в другую имеют условия, которые должны быть выполнены:

E 2 n — E 1 n = 4 π σ , или ∂ φ 1 ∂ n — ∂ φ 2 ∂ n = 0 .

где σ — это поверхностная полость свободных зарядов, n – единичный вектор нормали к границе раздела, проведенный из среды 1 в 2 , τ — единичный вектор, касательный к границе.

Эти уравнения выражают скачок нормальных составляющих вектора напряженности и непрерывность касательной вектора напряженностей электрического поля при переходе через любую заряженную поверхность независимо от ее формы и наличия или отсутствия зарядов вне ее.

Уравнение Пуассона в сферических, полярных и цилиндрических координатах

Запись уравнения может быть как при помощи декартовых координат, также и сферических, цилиндрических, полярных.

При наличии сферических r , θ , υ уравнение Пуассона запишется как:

1 r 2 · ∂ ∂ r r 2 ∂ φ ∂ r + 1 r 2 sin θ ∂ θ sin θ · ∂ φ ∂ θ + ∂ 2 φ r 2 sin 2 θ ∂ φ 2 = — 1 ε 0 ρ .

В полярных r , θ :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ r 2 ∂ θ 2 = — 1 ε 0 ρ .

В цилиндрических r , υ , z :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ ∂ z 2 + ∂ 2 φ r 2 ∂ υ 2 = — 1 ε 0 ρ .

Примеры решения задач

Найти поле между коаксиальными цилиндрами с радиусами r 1 и r 2 и с имеющейся разностью потенциалов ∆ U = φ 1 — φ 2 .

Решение

Необходимо зафиксировать уравнение Лапласа с цилиндрическими координатами, учитывая аксиальную симметрию:

1 r · ∂ ∂ r r ∂ φ ∂ r = 0 .

Решение имеет вид φ = — A ln ( r ) + B . Для этого следует выбрать нулевой потенциал на нужном цилиндре, тогда:

φ ( r 2 ) = 0 = — A ln r 2 + B , следовательно

φ ( r 1 ) = ∆ U = — A ln r 1 + B , получим:

A = ∆ U ln r 2 r 1 .

φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Ответ: поле с двумя коаксиальными цилиндрами может быть задано при помощи функции φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Найти потенциал поля, которое создает бесконечно круглый цилиндр с радиусом R и объемной плотностью заряда ρ . Использовать уравнение Пуассона.

Решение

Необходимо направить ось Z по оси цилиндра. Видно, что цилиндрическое распределение заряда аксиально симметрично, потенциал имеет такую же симметрию, иначе говоря, считается функцией φ ( r ) с r , являющимся расстоянием от оси цилиндра. Для решения используется цилиндрическая система координат. Уравнение Пуассона в ней запишется как:

φ 2 = C 2 ln r + C ‘ 2 .

C 1 , C ‘ 1 , C 2 , C ‘ 2 — это постоянные интегрирования. Имеем, что потенциал во всех точках должен быть конечным, а l i m r → 0 ln r = ∞ . Отсюда следует, что C 1 = 0 . Далее необходимо пронормировать потенциал, задействовав условие φ 1 ( 0 ) = 0 . Получим C ‘ 1 = 0 .

Поверхностные заряды отсутствуют, поэтому напряженность электрического поля на поверхности шара является непрерывной. Следовательно, что и производная от потенциала также непрерывна при r = R , как и сам потенциал. Исходя из условий, можно найти C 2 , C ‘ 2 :

C 2 ln R + C ‘ 2 = — 1 4 ρ ε 0 R 2 .

C 2 R = — 1 2 ρ ε 0 R .

Значит, полученные выражения записываются как:

Ответ: потенциал поля равняется:

Уравнения Лапласа и Пуассона

(1.110)

называется уравнением Пуассонав трехмерном пространстве. Если в этом уравнении , то оно называется уравнением Лапласа:

.(1.111)

Если ввести оператор , называемый оператором Лапласа, то уравнения (1.110) и (1.111) запишутся соответственно

и .

К исследованию уравнений Лапласа и Пуассона приводит рассмотрение задач о стационарном процессе: это задачи гидродинамики, диффузии, фильтрации, распределения температуры, электростатики и др.

Эти уравнения относятся к уравнениям эллиптического типа.

Те задачи, которые приводят к уравнениям, содержащим время, называются динамическими или нестационарными задачами математической физики; задачи, приводящие к уравнениям, не содержащим время, называются стационарнымиили статическими.

О постановке задачи математической физики

И ее корректности

Как было показано, уравнения математической физики имеют бесчисленное множество решений, зависящее от двух произвольных функций (речь идет об уравнениях второго порядка для функции двух переменных). Для того, чтобы из множества решений выделить определенное, характеризующее процесс, необходимо на искомую функцию наложить дополнительные условия, которые диктуются физическими соображениями. Тут можно провести аналогию с обыкновенными дифференциальными уравнениями, когда для выделения из общего решения частного, удовлетворяющего некоторым дополнительным условиям, отыскивались по этим условиям произвольные постоянные. Таковыми условиями для уравнений в частных производных являются, чаще всего, начальные и граничные условия. Граничные условия – это условия, заданные на границе рассматриваемой среды; начальные условия – условия, относящиеся к какому-нибудь моменту времени, с которого начинается изучение данного физического явления. Дополнительные условия,

так же как и само дифференциальное уравнение, должны вводиться на основе физических соображений, связанных с самим процессом. Вместе с тем дополнительные условия должны быть такими, чтобы обеспечить выделение из всего множества решений единственного решения. Число граничных и начальных условий определяется типом уравнения, а их вид – заданным исходным состоянием на границе объекта и внешней среды. Для рассматриваемых нами уравнений число начальных условий равно порядку старшей производной по времени, входящей в уравнение, а число граничных условий – порядку старшей производной по координате.

Совокупность дифференциального уравнения и дополнительных условий представляет собой математическую формулировку физической задачи и называется задачей математической физики.

Физическая задача решается по схеме:

1) реальный физический процесс (явление, объект) заменяется некоторым идеальным процессом (явлением, объектом) так, что последний значительно проще первого и вместе с тем сохраняет его основные черты (идеализация процесса);

2) выбирается величина (функция), характеризующая процесс, и используются законы, по которым он происходит;

3) на основании выбранных законов выводится дифференциальное уравнение для величины, характеризующей процесс;

4) выводятся дополнительные условия – начальные и граничные – также в соответствии с выбранными законами.

Итак, задача математической физики состоит в отыскании решений уравнений в частных производных, удовлетворяющих некоторым дополнительным условиям, скажем, граничным и начальным.

Задача математической физики считается поставленной корректно, если решение задачи, удовлетворяющее всем ее условиям, существует, единственно и устойчиво; последнее означает, что малые изменения любого из данных задачи вызывают малое изменение решения. Требование устойчивости необходимо по следующей причине. В данных любой конкретной задачи, особенно если они получены из опыта, всегда содержится некоторая погрешность, и нужно, чтобы малая погрешность в исходных данных приводила к малой неточности в решении. Это требование выражает физическую определенность поставленной задачи.

Примеры

ПРИМЕР 2.36. Выяснить, являются ли приведенные ниже равенства дифференциальными уравнениями в частных производных:

а) ,

б) .

Решение. Преобразуем уравнение а)

.

Данное уравнение является уравнением в частных производных, так как в него входят частные производные второго порядка

и .

Уравнение б) не является уравнением в частных производных, так как в него входит только функция . Действительно, раскрывая , получим

ПРИМЕР 2.37. Выяснить, какие из следующих уравнений являются линейными (однородными или неоднородными) и какие нелинейными:

а) ,

б) ,

в) .

Решение. Сравнивая данные уравнения с формой (1.4), заключаем, что

— уравнение а) есть неоднородное линейное уравнение второго порядка, для которого ;

— уравнение б) нелинейное, так как оно не является линейным относительно старших частных производных;

— уравнение в) является однородным линейным уравнением третьего порядка.

ПРИМЕР 2.38. Решить уравнение .

Решение. Ясно, что искомая функция не зависит от переменной , но может быть любой функцией от : , поскольку, дифференцируя по , получим ноль, а это значит, что данное равенство выполняется. Таким образом, решение уравнения содержит одну произвольную функцию .

ПРИМЕР 2.39. Решить уравнение , где заданная функция.

Решение. Интегрируя по , восстановим искомую функцию

, где произвольная функция.

Итак, решение уравнений в примерах 2.38 и 2.39 содержат одну произвольную функцию . Такое решение называется общим. В отличие от общего решения обыкновенного дифференциального уравнения первого порядка, которое содержит одну произвольную постоянную, решение уравнения в частных производных первого порядка содержит одну произвольную функцию.

ПРИМЕР 2.40. Решить уравнение .

Решение. Перепишем уравнение так: . Положим , после чего данное уравнение принимает вид . Как было установлено в примере 2.38, общее решение последнего уравнения имеет вид: , где произвольная функция. Исходное уравнение примет вид: . Проинтегрировав полученный результат по , получим

, иначе

,

где и произвольные дважды дифференцируемые функции.

Легко проверить, что найденная функция удовлетворяет данному уравнению.

Итак, решение уравнения в частных производных второго порядка содержит уже две произвольные функции. Такое решение называют общим.

Приведенные в качестве примеров уравнения дают основание сделать заключение: общее решение уравнения в частных производных первого порядка содержит одну произвольную функцию, а общее решение уравнения второго порядка – две произвольные функции. В этом заключается коренное отличие общего решения уравнения в частных производных от общего решения обыкновенного дифференциального уравнения, которое содержит одну и две произвольные постоянные.

В дальнейшем будет выяснено, какие дополнительные условия надо задать, чтобы с их помощью можно было выделить частное решение, т. е. функцию, удовлетворяющую как уравнению, так и дополнительным условиям.

2.17 КЛАССИФИКАЦИЯ И ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ

ВТОРОГО ПОРЯДКА

Все многообразие линейных относительно старших производных (или просто линейных) уравнений может быть разделено на три класса (типа). В каждом классе есть простейшие уравнения, которые называются каноническими. Решения уравнения одного и того же типа (класса) имеют много общих свойств. Для изучения этих свойств достаточно рассмотреть канонические уравнения, так как другие уравнения данного класса могут быть приведены к каноническому виду.

Классификация уравнений вида (2.52) проводится в соответствии со знаком дискриминанта .

Говорят, что уравнение (1.3) в области принадлежит

а) гиперболическому типу, если ,

б) параболическому типу, если ,

в) эллиптическому типу, если .

(2.54)

называется каноническим уравнением гиперболического типа.

Второй канонический вид уравнения гиперболического типа таков:

(2.55)
(2.56)

называется каноническим уравнением параболического типа.

(2.57)

называется каноническим уравнением эллиптического типа.

Дата добавления: 2017-10-09 ; просмотров: 1435 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/uravnenie-puassona/

http://helpiks.org/9-33996.html