Х1 и х2 корни уравнения х2 а2

Задачи с параметрами, сводящиеся к исследованию расположения корней квадратного уравнения

Разделы: Математика

  1. Постановка цели урока:

Рассмотрим, как при решении задач с параметрами используются свойства квадратной функции. Задачи разнообразные по форме и содержанию, но объединены обшей идеей — в основе их решения лежат свойства функции: у=ах 2 +bх+с

Дискриминант, старший коэффициент а и хо=(-b/2а) абсцисса вершины параболы конструируют основу, на которой строится теория решения задач, связанных с квадратичной функцией.

  1. При каких значениях параметра а корни уравнения ах 2 -(2а+1)х+За-1=0 больше 1?

Очевидно, что задача равносильна следующей: “при каких значениях параметра, а корни квадратного трехчлена f(х)=ах -(2а+1)х+За-1 больше 1?

Переход от одной формулировки задач к другой дает возможность использовать основную идею решения, которая связана с описанием свойств квадратного трехчлена и с их геометрической интерпретацией.

В частности, чтобы корни квадратного трехчлена f(х)=ах +bх+с (а≠0) были больше числа d (х1; х2 > d) необходимо и достаточно выполнение условий:

Скажите, а как можно от совокупности двух систем перейти к одной системе

Мы получим условие того, что корни квадратного трехчлена больше данного числа d. Неплохо бы помнить данное утверждение, однако заучивать его не надо, гораздо важнее понять механизм возникновения необходимости неравенств и научиться его применить при решении конкретных неравенств и научиться его применить при решении конкретных задач. Вернемся к нашей задаче:

  1. а=0

=> х=-1 не удовлетворяет условию задачи

Остается только решить эту систему неравенств (1) при а (1; )

Скажите, а есть ли другой способ задач? (Этот же результат мы получим, решая неравенство x1>1, где x1 — меньший корень уравнения.)

  • При каких значениях а корни уравнения х 2 -2(а-1)х+2а+1=0 имеют разные знаки и оба по абсолютной величине меньше 4?
  • Как можно перефразировать данное задание? (Например, корни квадратичного трехчлена принадлежат промежутку (-4;4)

  • Как можно заменить два последних неравенства в данной конкретной задаче, учитывая, что ветви параболы направлены вверх?

Развиваем I — ключевую задачу:

    При каких значениях параметра а оба корня уравнения х 2 -ах+2=0 удовлетворяет условию 1 -2 очень сложно.

  1. Найти а, при которых число -1 лежит между корнями уравнения х 2 +2ах+4а 2 -а-2=0 Мы варьируем условие! Во второй задаче корень лежит между числами, а в третьей число лежит между корнями.

Вернемся ко второй задаче: обязательно ли условие D≥0?

Развиваем III ключевую задачу:

3sinх+(4-2а)sinх+1 -а =0 имеем корни разного знака? Sinх=1; |t| ≤ 1

3t 2 — (4 — 2а)t +1 — а 2 = 0

f(-1)>0
f(1)>0
(0)>0
a 2 +2a-8 2 -2a 2 -1>0(a+4)(a-2) 0

Ответ: а (1,2)

    При каких а, уравнение соs 2 х-(а-2)соsх+4а+1=0 не имеет корней? cosх=t |t| 2 -4(4a+1) 2 -12a 0
    f(-1) б х+cos б х+a*sinхсоsх≥0
    sin 4 х-sin 2 хсоs 2 х+соs 4 х+аsinхсоsх≥0
    1-3sin 2 хсоs 2 х+аsinхсоsх≥0



Ответ:

7. При каких а корни уравнения х 2 -2х-а +1=0 лежат между корнями уравнения

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение

Немного теории.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m

4) (ab) n = a n b n

7) a n > 1, если a > 1, n > 0

8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leqslant 0\), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac<3^x> <7^x>= 1 \), откуда \( \left( \frac<3> <7>\right) ^x = 1 \), х = 0
Ответ х = 0

Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
\( \left( \frac<2> <5>\right) ^ = 1 \)
x — 2 = 0
Ответ х = 2

Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

Параметр в квадратном уравнении

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Решение квадратных уравнений с параметрами

Если в уравнении некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение — параметрическим.

Научиться решать любые задачи с параметрами, используя какой-то алгоритм или формулы, нельзя. Надо использовать соображения, рассматривать их как задачи исследовательские.

Уравнение вида ах 2 + bх + с = 0 , а ≠ 0, где коэффициенты а, b, с – любые действительные числа, назы­вается квадратным.

Выражение b 2 4ас называют дискриминантом квадратного уравнения.

Если D = 0, то квадратное уравнение имеет единственный действительный корень (или говорят, что это уравнение имеет два кратных корня ).

Если D > 0, то квадратное уравнение имеет два различных действительных корня .

а ≠ 0, то сумма корней равна , а их произведение равно .

Обратное утверждение: Если числа х 1 , х 2 таковы, что

, , то эти числа – корни уравнения ах 2 + bх + с = 0, а ≠ 0 .

Значения параметра, при которых или при переходе через которые происходит качест­венное изменение уравнения, можно назвать контрольными или особыми. Очень важно уметь нахо­дить их.

При решении квадратного уравнения с параметрами кон­трольными будут те значения параметра, при которых коэффи­циент при х 2 обращается в нуль.

Если этот коэффи­циент равен нулю, то уравнение превращается в линейное;

если же этот коэффи­циент отличен от нуля, то имеем квадратное уравнение (в этом и состоит качественное изменение уравнения).

Понятие квадратного трехчлена и его свойства.

Квадратным трехчленом называется выражение вида ax ²+ bx + c , где a ≠0. Графиком соответствующей квадратичной функции является парабола.

При a a >0 ветви направлены вверх.

Выражение x ²+ px + q называется приведенным квадратным трехчленом.

В зависимости от величины дискриминанта D = b ²- 4 ac возможны следующие случаи расположения графика квадратного трехчлена:

при D >0 существуют две различные точки пересечения параболы с осью Ох (два различных корня трехчлена);

при D =0 эти две точки сливаются в одну, то есть парабола касается оси Ох (один корень трехчлена);

В последнем случае при а>0 парабола лежит целиком выше оси Ох,

«Белое пятнышко» в теме «Квадратный трёхчлен и квадратичная функция» может привести к появлению «мёртвых зон» и провалов в наших знаниях элементарной математики. Кстати, преподаватели мехмата МГУ О. Черкасова и А. Якушева утверждают: « Во многих так называемых задачах повышенной сложности «торчат уши квадратного трехчлена».

. Расположение параболы по отношению к оси абсцисс

в зависимости от коэффициента а и дискриминанта.

Теоремы о знаках корней квадратного трехчлена.

Теорема 1. Для того, чтобы корни квадратного трехчлена имели одинаковые знаки, необходимо и достаточно выполнения соотношений:

а оба корня будут отрицательны, если x 1+ x 2= — b / a

Теорема 2. Для того, чтобы корни квадратного трехчлена имели разные знаки, необходимо и достаточно выполнения соотношения x 1• x 2= c / a

В данном случае нет необходимости проверять знак дискриминанта, поскольку при выполнении условия c / a c a D = b ²-4 ac >0.

Расположение корней квадратного трехчлена

Рассмотрим теперь особенности расположения корней квадратного трехчлена с заданными свойствами на координатной плоскости.

Решение задач, для которых характерны следующие формулировки : при каких значениях параметра корни ( только один корень) больше (меньше, не больше, не меньше) заданного числа р; корни расположены между числами p и q и т.д.; опирается на утверждения о расположении корней квадратичной функции.

При решении многих задач требуется знание следующих теорем и следствий.

Пусть f(х) = ах 2 + bx + с имеет действительные корни х1, х2 (которые могут быть кратными), а М, N – какие-нибудь действи­тельные числа, причем М

Теорема 1. Для того чтобы оба корня квадратного трехчлена были меньше, чем число М (то есть лежали на числовой оси ле­вее, чем точка М), необходимо и достаточно выполнение сле­дующих условий:

или

Теорема 2. Для того чтобы один из корней квадратного трехчлена был меньше, чем число М, а другой больше, чем М (то есть точка М лежала бы между корнями), необходимо и дос­таточно выполнение следующих условий:

или

Эти две системы можно заменить формулой .

Теорема 3. Для того чтобы оба корня квадратного трехчлена были больше, чем число М (то есть лежали на числовой оси правее, чем точка М), необходимо и дос­таточно выполнение следующих условий:

или

Следствие 1. Для того , чтобы оба корня квадратного трехчлена были меньше, чем число М, но меньше, чем число N (то есть лежали в интервале между М и N, необходимо и достаточно выполнение следующих условий:

или

Следствие 2. Для того чтобы больший корень квадратного трехчлена лежал в интервале между М и N, необходимо и достаточно выполнение следующих условий:

или

Следствие 3. Для того чтобы только меньший корень квадратного трехчлена лежал в интервале между М и N, необходимо и достаточно выполнение следующих условий:

или

Следствие 4. Для того чтобы один из корней квадратного трехчлена был меньше, чем число М, но меньше, а другой больше, чем число N (то есть отрезок МN лежал внутри интервала между корнями), необходимо и достаточно выполнение следующих условий:

или

Акцентировать внимание надо на то, что здесь контрольными являются: направление ветвей параболы, знаки значений f(M), f(N), расположение вершины параболы..

Задача 1. При каких значениях параметра а уравнение х 2 +2∙(а+1)х+9=0 имеет два различных положительных корня?

Решение. Так как по условию корни различны, то D >0. Воспользуемся теоремой 1(о знаках корней квадратного трехчлена). Составим систему :

D= (a+1) 2 — 9 >0, (a-2)∙(a+4)>0,

Решив последнюю систему, получим , что -∞ a a

Задача 2. При каких значениях параметра а уравнение х 2 -4х + (4-а 2 )=0

имеет два корня разных знаков?

Решение. Воспользуемся теоремой 2 ( о знаках корней квадратного трехчлена). Запишем условие:

4-а 2 2 > 4 │а│> 2 => а 2. Ответ: а 2 .

Задача 3. При каких значениях параметра а уравнение х 2 – 2ах + а 2 – а- 6 =0 имеет два разных отрицательных корня?

Решение. Воспользуемся теоремой 1 (о расположении корней квадратного трехчлена) и запишем систему :

D >0 , а+6>0,

f (0)>0 ; a 2 — a -6>0.

Решив последнюю систему, получим -6 a a

Задача 4. При каких значениях параметра а число 2 находится между корнями квадратного уравнения х 2 + (4а+5)∙х + 3-2а =0.

Решение. Пусть х1 и х2 корни квадратного трехчлена, причем х1

D= 16a 2 +48 a +13 >0,

F (2)= 2 2 + (4 a +5)∙2 +3- 2 a

Задача 5. При каких значениях параметра а корни уравнения

2 – 2х + а =0 находятся между числами -1 и 1?

Решение. Так как корни находятся между числами -1 и 1,

Следствием 1 и составим систему :

-1 0 ,

Решив систему, получим -2

Теорема Виета и задачи с параметрами.

Задача 6 . При каких значениях параметра a сумма квадратов корней уравнения равна ?

Решение. Найдем дискриминант . Уравнение имеет два корня при любом a. Используя теорему Виета, найдем

+ =(+)²-2=(3 a )²-2 a ²

Поскольку , то , a =0,5; -0,5. Ответ: a =0,5; -0,5.

Задача7 . При каком значении m сумма квадратов корней уравнения

Задача 8. Найти все значения параметра а, при которых модуль разности корней уравнения x 2 -6 x +12+ a 2 -4 a =0 принимает наибольшее значение.

, — корни уравнения, тогда | |

-расстояние между корнями, и оно, по условию, должно быть наибольшим.

Уравнение запишем в виде: -6 x +12=- a ²+4 a

и решим его графически.

= 3, y в =3

-прямая, параллельная оси ОХ.

Чем выше она пройдет, тем больше расстояние между корнями ,т.е. надо узнать, при каком значении а функция у= y ( a )= a ²+4 a

принимает наибольшее значение .

Графиком является парабола, ветви которой направлены вниз.

Функция достигает наибольшего значения при =2.

.

Графический способ определения числа корней уравнения с параметром.

Рациональность любого верного решения опирается на условия задачи и напрямую зависит от них. Иногда графический метод помогает быстрее и удобнее решить задачу.

Остановимся на нахождении числа решений уравнений с параметрами, в которых под знаком модуля находится квадратный трёхчлен.

Задача 9. Найдите число решений уравнения

.

Решение: Построим график функции — 2 x – 3 | .

Выделим полный квадрат:

(1; -4) -координаты вершины параболы

Уравнение = a имеет столько решений, сколько

раз прямая у = а пересекает график функции

если , то графики не имеют общих точек, т.е. нет решения;

если , то графики имеют две общие точки , т.е. два решения;

если , то графики имеют четыре общие точки — четыре решения;

если , то графики имеют три общие точки , т.е. три решения;

если , то графики имеют две общие точки , т.е. два решения.

у

y = a (

4 y = a (

y = a (

х

y = a (

y = a (

Задача 10 . Для каждого значения параметра а определите число решений

уравнения .

Решение: Здесь в отличие от предыдущего уравнения параметр а входит в выражение, как стоящее под знаком модуля, так и находящееся вне его. Преобразуем левую часть данного уравнения:

.

Строим схематически график левой части данного уравнения с учётом того, что дискриминант квадратного трёхчлена всегда положителен: .

Проводим горизонтальные прямые – графики функции у = а + 3

При различных значениях параметра а.

Если , т.е. , то графики и

не пересекаются, и значит, нет решений.

Если а + 3 = 0, т.е. а = -3, то графики пересекаются в двух точках

-уравнение имеет два решения.

Если , то графики имеют четыре общие точки ,

а уравнение – четыре решения.

Найдём, при каких значениях а уравнение будет иметь четыре решения. Для этого решим двойное неравенство

, или

Значит, при и уравнение имеет четыре решения. Если = -1 и а = 2, то графики имеют три

Общие точки . Значит, уравнение имеет три решения.

Если же то графики пересекаются в двух точках , т.е. уравнение имеет два решения.

y = a +3

y = a +3 (

y = a + 3 (

х

Графический метод не дает в большинстве случаев точного решения уравнения, однако, часто оказывается более эффективным, чем аналитический, т.к. он может быть полезен для наглядной иллюстрации

рассуждений. Но не стоит забывать о его «подводных рифах», так как иногда не все решения можно увидеть . В силу ограниченности наших графических возможностей абсолютно точный график в принципе построить нельзя, поэтому слепо доверять рисунку может быть просто опасно. Более того, часто случается, что при решении задач подобным способом не обойтись без аналитических формул и вычислений.


источники:

http://www.math-solution.ru/math-task/exponential-equality

http://infourok.ru/parametr_v_kvadratnom_uravnenii-305376.htm