H2 o2 уравнение реакции и степенью окисления

H2 o2 уравнение реакции и степенью окисления

18.5. ОВР пероксида водорода

В молекулах пероксида водорода H2O2 атомы кислорода находятся в степени окисления –I. Это промежуточная и не самая устойчивая степень окисления атомов этого элемента, поэтому пероксид водорода проявляет и окислительные, и восстановительные свойства.

Окислительно-восстановительная активность этого вещества зависит от концентрации. В обычно используемых растворах с массовой долей 20 % пероксид водорода довольно сильный окислитель, в разбавленных растворах его окислительная активность снижается. Восстановительные свойства для пероксида водорода менее характерны, чем окислительные, и также зависят от концентрации.

Пероксид водорода – очень слабая кислота (см. приложение 13), поэтому в сильнощелочных растворах его молекулы превращаются гидропероксид-ионы.

В зависимости от реакции среды и от того, окислителем или восстановителем является пероксид водорода в данной реакции, продукты окислительно-восстановительного взаимодействия будут разными. Уравнения полуреакций для всех этих случаев приведены в таблице 1.

Уравнения окислительно-восстановительных полуреакций H2O2 в растворах

Реакция среды

H2O2 окислитель

H2O2 восстановительКислотнаяH2O2 + 2H3O + 2e – = 4H2OH2O2 + 2H2O – 2e – = O2 + 2H3O НейтральнаяH2O2 + 2e – = 2OH H2O2 + 2H2O – 2e – = O2 + 2H3O ЩелочнаяHO2 + H2O + 2e – = 3OH HO2 + OH – 2e – = O2 + H2O

Рассмотрим примеры ОВР с участием пероксида водорода.

Пример 1. Составьте уравнение реакции, протекающей при добавлении раствора йодида калия к раствору пероксида водорода, подкисленному серной кислотой.

1H2O2 + 2H3O + 2e – = 4H2O
12I – 2e – = I2

H2O2 + 2H3O +2I = 4H2O + I2
H2O2 + H2SO4 + 2KI = 2H2O + I2 + K2SO4

Пример 2. Составьте уравнение реакции между перманганатом калия и пероксидом водорода в водном растворе, подкисленном серной кислотой.

2MnO4 + 8H3O + 5e – = Mn 2 + 12H2O
5H2O2 + 2H2O – 2e – = O2 + 2H3O

2MnO4 + 6H3O+ + 5H2O2 = 2Mn 2 + 14H2O + 5O2
2KMnO4 + 3H2SO4 + 5H2O2 = 2MnSO4 + 8H2O + 5O2 + K2SO4

Пример 3. Составьте уравнение реакции пероксида водорода с йодидом натрия в растворе в присутствии гидроксида натрия.

36HO2 + H2O + 2e – = 3OH
12I + 6OH – 6e – = IO3 + 3H2O

3HO2 + I = 3OH + IO3
3NaHO2 + NaI = 3NaOH + NaIO3

Без учета реакции нейтрализации между гидроксидом натрия и пероксидом водорода это уравнение часто записывают так:

Это же уравнение получится, если сразу (на стадии составления баланса) не принимать во внимание образование гидропероксид-ионов.

Пример 4. Составьте уравнение реакции, протекающей при добавлении диоксида свинца к раствору пероксида водорода в присутствии гидроксида калия.

Диоксид свинца PbO2 – очень сильный окислитель, особенно в кислотной среде. Восстанавливаясь в этих условиях, он образует ионы Pb 2 . В щелочной среде при восстановлении PbO2 образуются ионы [Pb(OH)3] .

1PbO2 + 2H2O + 2e – = [Pb(OH)3] + OH
1HO2 + OH – 2e – = O2 + H2O

PbO2 + H2O + HO2 = [Pb(OH)3] + O2

Без учета образования гидропероксид-ионов уравнение записывается так:

PbO2 + H2O2 + OH = [Pb(OH)3] + O2 + 2H2O

Если по условию задания добавляемый раствор пероксида водорода был щелочным, то молекулярное уравнение следует записывать так:

PbO2 + H2O + KHO2 = K[Pb(OH)3] + O2

Если же в реакционную смесь, содержащую щелочь, добавляется нейтральный раствор пероксида водорода, то молекулярное уравнение может быть записано и без учета образования гидропероксида калия:

PbO2 + KOH + H2O2 = K[Pb(OH)3] + O2

Среди окислительно-восстановительных реакций выделяют реакции дисмутации (диспропорционирования, самоокисления-самовосстановления).

Реакции дисмутации – ОВР, в которых часть атомов одного и того же элемента в одной и той же степени окисления восстанавливается, а часть – окисляется.

Примером известной вам реакции дисмутации является реакция хлора с водой:

Cl2 + H2O HCl + HClO

В этой реакции половина атомов хлора(0) окисляется до степени окисления +I, а вторая половина восстанавливается до степени окисления –I:

Составим методом электронно-ионного баланса уравнение аналогичной реакции, протекающей при пропускании хлора через холодный раствор щелочи, например KOH:

1Cl2 + 2e – = 2Cl
1Cl2 + 4OH – 2e – = 2ClO + 2H2O

2Cl2 + 4OH = 2Cl + 2ClO + 2H2O

Все коэффициенты в этом уравнении имеют общий делитель, следовательно:

Cl2 + 2OH = Cl + ClO + H2O
Cl2 + 2KOH = KCl + KClO + H2O

Дисмутация хлора в горячем растворе протекает несколько иначе:

10Cl2 + 2e – = 2Cl 1

2Cl2 + 12OH – 10e – = 2ClO3 + 6H2O

3Cl2 + 6OH = 5Cl + ClO3 + 3H2O
3Cl2 + 6KOH = 5KCl + KClO3 + 3H2O

Большое практическое значение имеет дисмутация диоксида азота при его реакции c водой (а) и с растворами щелочей (б):

1NO2 + 3H2O – e – = NO3 + 2H3O

1NO2 + 2OH – e – = NO3 + H2O

1NO2 + H2O + e – = HNO2 + OH

1NO2 + e – = NO2

2NO2 + 2H2O = NO3 + H3O + HNO2

2NO2 + 2OH = NO3 + NO2 + H2O

2NO2 + H2O = HNO3 + HNO2

2NO2 + 2NaOH = NaNO3 + NaNO2 + H2O

Реакции дисмутации протекают не только в растворах, но и при нагревании твердых веществ, например, хлората калия:

2Cl +V + 6e – = Cl –I3

6Cl +V – 2e – = Cl +VII

Еще один тип реакций, протекающих при нагревании твердых веществ – внутримолекулярные ОВР.

Внутримолекулярные ОВР – ОВР, в которых атомы-окислители и атомы-восстановители входят в состав одного и того же вещества.

Характерным и очень эффектным примером внутримолекулярной ОВР является реакция термического разложения дихромата аммония (NH4)2Cr2O7. В этом веществе атомы азота находятся в своей низшей степени окисления (–III), а атомы хрома – в высшей (+VI). При комнатной температуре это соединение вполне устойчиво, но при нагревании интенсивно разлагается. При этом хром(VI) переходит в хром(III) – наиболее устойчивое состояние хрома, а азот(–III) – в азот(0) – также наиболее устойчивое состояние. С учетом числа атомов в формульной единице уравнения электронного баланса:

12Cr +VI + 6e – = 2Cr +III

12N –III – 6e – = N2,

а само уравнение реакции:

(NH4)2Cr2O7 = Cr2O3 + N2 + 4H2O .

Другой важный пример внутримолекулярной ОВР – термическое разложение перхлората калия KClO4. В этой реакции хлор(VII), как и всегда, когда он выступает в роли окислителя, переходит в хлор(–I), окисляя кислород(–II) до простого вещества:

4Cl +VII + 8e – = Cl –I2

82O –II – 4e – = O2

и, следовательно, уравнение реакции

KClO4 = KCl + 2O2

Аналогично разлагается при нагревании и хлорат калия KClO3, если разложение проводить в присутствии катализатора (MnO2): 2KClO3 = 2KCl + 3O2

В отсутствие катализатора протекает реакция дисмутации.
К группе внутримолекулярных ОВР относятся и реакции термического разложения нитратов.
Обычно процессы, протекающие при нагревании нитратов довольно сложны, особенно в случае кристаллогидратов. Если в кристаллогидрате молекулы воды удерживаются слабо, то при слабом нагревании происходит обезвоживание нитрата [например, LiNO3 . 3H2O и Ca(NO3)2 4H2O обезвоживаются до LiNO3 и Ca(NO3)2], если же вода связана прочнее [как, например, в Mg(NO3)2 . 6H2O и Bi(NO3)3 . 5H2O], то происходят своего рода реакции » внутримолекулярного гидролиза» с образованием основных солей – гидроксид-нитратов [Mg(NO3)OH и Bi(NO3)2OH], которые при дальнейшем нагревании могут переходить в оксид-нитраты <[Be4(NO3)6O] и [Bi6O6](NO3)6>, последние при более высокой температуре разлагаются до оксидов.

Безводные нитраты при нагревании могут разлагаться до нитритов (если они существуют и при этой температуре еще устойчивы), а нитриты – до оксидов. Если нагревание проводится до достаточно высокой температуры, или соответствующий оксид малоустойчив (Ag2O, HgO), то продуктом термического разложения может быть и металл (Cu, Cd, Ag, Hg).

Несколько упрощенная схема термического разложения нитратов показана на рис. 5.

Примеры последовательных превращений, протекающих при нагревании некоторых нитратов (температуры приведены в градусах Цельсия):

KNO3 KNO2 K2O;

Ca(NO3)2 . 4H2O Ca(NO3)2 Ca(NO2)2 CaO;

Mg(NO3)2 . 6H2O Mg(NO3)(OH) MgO;

Cu(NO3)2 . 6H2O Cu(NO3)2 CuO Cu2O Cu;

Bi(NO3)3 . 5H2O Bi(NO3)2(OH) Bi(NO3)(OH)2 [Bi6O6](NO3)6 Bi2O3.

Несмотря на сложность происходящих процессов, при ответе на вопрос, что получится при » прокаливании» (то есть при температуре 400 – 500 o С) соответствующего безводного нитрата, обычно руководствуются следующими предельно упрощенными правилами:

1) нитраты наиболее активных металлов (в ряду напряжений – левее магния) разлагаются до нитритов;
2) нитраты менее активных металлов (в ряду напряжений – от магния до меди) разлагаются до оксидов;
3) нитраты наименее активных металлов (в ряду напряжений – правее меди) разлагаются до металла.

Используя эти правила, следует помнить, что в таких условиях
LiNO3 разлагается до оксида,
Be(NO3)2 разлагается до оксида при более высокой температуре,
из Ni(NO3)2 помимо NiO может получиться и Ni(NO2)2,
Mn(NO3)2 разлагается до Mn2O3,
Fe(NO3)2 разлагается до Fe2O3;
из Hg(NO3)2 кроме ртути может получиться и ее оксид.

Рассмотрим типичные примеры реакций, относящихся к этим трем типам:

KNO3 KNO2 + O2

2N +V +2e– = N +III
12O– II – 4e– = O2

2KNO3 = 2KNO2 + O2

Zn(NO3)2 ZnO + NO2 + O2

N +V + e– = N +IV
2O– II – 4e– = O2

2Zn(NO3)2 = 2ZnO + 4NO2 + O2

AgNO3 Ag + NO2 + O2

2Ag +1 + e– = Ag

N +5 + e– = N +42e–12O -2 – 4e– = O2

2AgNO3 = 2Ag + 2NO + O

ОВР конмутации – ОВР, в которых происходит выравнивание степени окисления атомов одного и того же элемента, находившихся до реакции в разных степенях окисления.

Эти реакции могут быть как межмолекулярными, так и внутримолекулярными. Например, внутримолекулярные ОВР, протекающие при термическом разложении нитрата и нитрита аммония, относятся к реакциям конмутации, так как здесь происходит выравнивание степени окисления атомов азота:

NH4NO3 = N2O + 2H2O (около 200 o С)
NH4NO2 = N2 + 2H2O (60 – 70 o С)

При более высокой температуре (250 – 300 o С) нитрат аммония разлагается до N2 и NO, а при еще более высокой (выше 300 o С) – до азота и кислорода, и в том и в другом случае образуется вода.

Примером межмолекулярной реакции конмутации является реакция, протекающая при сливании горячих растворов нитрита калия и хлорида аммония:

NH4 + NO2 = N2 + 2H2O

Если проводить аналогичную реакцию, нагревая смесь кристаллических сульфата аммония и нитрата кальция, то, в зависимости от условий, реакция может протекать по-разному:

Первая и третья из этих реакций – реакции конмутации, вторая – более сложная реакция, включающая как конмутацию атомов азота, так и окисление атомов кислорода. Какая из реакций будет протекать при температуре выше 250 o С, зависит от соотношения реагентов.

Реакции конмутации, приводящие к образованию хлора, протекают при обработке соляной кислотой солей кислородсодержащих кислот хлора, например:

Также по реакции конмутации образуется сера из газообразных сероводорода и диоксида серы:

ОВР конмутации довольно многочисленны и разнообразны – к ним относятся даже некоторые кислотно-основные реакции, например:

Для составления уравнений ОВР конмутации используется как электронно-ионный, так и электронный баланс, в зависимости от того, в растворе протекает данная реакция или нет.

Изучая главу IX, вы познакомились с электролизом расплавов различных веществ. Так как подвижные ионы присутствуют и в растворах, электролизу могут быть подвергнуты также растворы различных электролитов.

Как при электролизе расплавов, так и при электролизе растворов, обычно используют электроды, изготовленные из материала, не вступающего в реакцию (графита, платины и т. п.), но иногда электролиз проводят и с » растворимым» анодом. » Растворимый» анод используют в тех случаях, когда необходимо получить электрохимическим способом соединение элемента, из которого изготовлен анод. При электролизе имеет большое значение разделены анодное и катодное пространство, или электролит в процессе реакции перемешивается – продукты реакции в этих случаях могут оказаться разными.

Рассмотрим важнейшие случаи электролиза.

1. Электролиз расплава NaCl. Электроды инертные (графитовые), анодное и катодное пространства разделены. Как вы уже знаете, в этом случае на катоде и на аноде протекают реакции:

K: Na + e – = Na
A: 2Cl – 2e – = Cl2

Записав таким образом уравнения реакций , протекающих на электродах, мы получаем полуреакции, с которыми можем поступать точно так же, как в случае использования метода электронно-ионного баланса:

K:Na + e – = Na1

A:2Cl – 2e – = Cl2

Сложив эти уравнения полуреакций, получаем ионное уравнение электролиза

2Na + 2Cl 2Na + Cl

а затем и молекулярное

2NaCl 2Na + Cl

В этом случае катодное и анодное пространства должны быть разделены для того, чтобы продукты реакции не реагировали между собой. В промышленности эта реакция используется для получения металлического натрия.

2. Электролиз расплава K2CO3. Электроды инертные (платиновые). Катодное и анодное пространства разделены.

K:K + e – = K1

A:2CO3 2 – 4e – = 2CO2 + O2

4K+ + 2CO3 2 4K + 2CO2 + O2
2K2CO3 4K + 2CO2 + O2

3. Электролиз воды (H2O). Электроды инертные.

K:2H3O + 2e – = H2 + 2H2O1

A:4OH – 4e – = O2 + 2H2O

4H3O + 4OH 2H2+ O2 + 6H2O

2H2O 2H2 + O2

Вода – очень слабый электролит, в ней содержится очень мало ионов, поэтому электролиз чистой воды протекает крайне медленно.

4. Электролиз раствора CuCl2. Электроды графитовые. В системе присутствуют катионы Cu 2 и H3O , а также анионы Cl и OH . Ионы Cu 2 более сильные окислители, чем ионы H3O (см. ряд напряжений), поэтому на катоде прежде всего будут разряжаться ионы меди, и только, когда их останется очень мало, будут разряжаться ионы оксония. Для анионов можно руководствоваться следующим правилом:

При электролизе растворов простые (одноатомные) анионы разряжаются (окисляются) раньше, чем сложные (многоатомные) ионы.

Следовательно в нашем случае на анода будут разряжаться хлоридные ионы.

K:Cu 2 + 2e – = Cu1

A:2Cl – 2e – = Cl2

Cu 2 + 2Cl Cu + Cl

CuCl2 Cu + Cl

5. Электролиз раствора CuSO4. Электроды графитовые.

В водных растворах за счет автопротолиза воды (2H2O H3O + OH ) всегда в незначительном количестве присутствуют ионы H3O и OH . В случае соли, содержащей сложный анион, вместо него разряжаются гидроксид-ионы (4OH – 4e – = O2 + 2H2O), равновесие автопротолиза воды смещается, и в анодном пространстве накапливаются ионы оксония. Суммарное уравнение полуреакции в анодном пространстве: 6H2O – 4e – = O2 + 4H3O . В рамках теории электролитической диссоциации это уравнение записывают следующим образом: 2H2O – 4e – = O2 + 4H . Таким образом, для нашего случая получаем (слева – в рамках протолитической теории, справа – в рамках теории электролитической диссоциации):

K:Cu 2 + 2e – = Cu

K:Cu 2 + 2e – = Cu

A:6H2O – 4e – = O2 + 4H3O

A:2H2O – 4e – = O2 + 4H 2Cu 2 + 6H2O 2Cu + O2 + 4H3O 2Cu 2 + 2H2O 2Cu + O2 + 4H 2CuSO4 + 2H2O 2Cu + O2 + H2SO42CuSO4 + 2H2O 2Cu + O2 + H2SO4

На катоде выделяется медь, на аноде – кислород, а в растворе накапливается серная кислота.

Ионы металлов, стоящих в ряду напряжений правее водорода, при электролизе растворов солей разряжаются.

В принципе ионы металлов, стоящих в ряду напряжений левее водорода, при электролизе водных растворов не должны разряжаться. В этих случаях должен был бы выделяться водород. Практически, из-за специфических особенностей разряда ионов водорода, при электролизе выделяются и более активные металлы.

Ионы металлов, стоящих в ряду напряжений между алюминием и водородом при электролизе растворов солей разряжаются вместе с водородом.

При этом, чем активнее металл, тем больше водорода выделяется, и тем большая часть электрической энергии расходуется бесполезно.

6. Электролиз раствора NiBr2. Электроды графитовые. Катодное и анодное пространства разделены.

K:Ni 2 + 2e – = Ni1

A:2Br – 2e – = Br2

Ni 2 +2Br Ni + Br2
NiBr2 Ni + Br2

Одновременно с этим на катоде выделяется водород, в растворе накапливаются гидроксид-ионы, и, как следствие, протекает побочная реакция образования нерастворимого гидроксида никеля.

Ионы металлов, стоящие в ряду напряжений до алюминия при электролизе не разряжаются.

7. Электролиз раствора Na2SO4. Электроды платиновые. Раствор перемешивается.

В этом случае на катоде разряжаются не ионы натрия, а ионы оксония (2H3O + 2e – = H2 + 2H2O), равновесие автопротолиза воды смещается, в катодном пространстве накапливаются гидроксид-ионы. Суммарное уравнение реакции в катодном пространстве: 2H2O + 2e – = H2 + 2OH .

K:2H2O + 2e – = H2 + 2OH 1

A:6H2O – 4e – = O2 + 4H3O

10H2O 2H + O2 + 4OH + 4H3O

Так как раствор перемешивается, происходит реакция нейтрализации. В итоге получаем

2H2O 2H2 + O2

то есть, реакцию электролиза воды. При электролизе воды для повышения ее электропроводности в нее специально добавляют соли с неразряжающимися катионами и анионами, что значительно ускоряет процесс электролиза.

8. Электролиз раствора CuSO4. Анод медный.

K:Cu 2 + 2e – = Cu1

A:Cu – 2e – = Cu 2

В результате сложения уравнений полуреакций мы можем прийти к ошибочному выводу, что ничего не происходит. На самом деле эти полуреакции описывают реальный технологический процесс электролитического рафинирования (очистки) меди: с катода, содержащего примеси на анод переходят только ионы меди.

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

Водород

Водород (лат. hydrogenium = греч. ὕδωρ — вода + γεννάω — рождаю) — самый легкий химический элемент, при обычных условиях — газ без цвета, запаха и вкуса. В соединении с кислородом образует воду.

Водород — самый распространенный элемент Вселенной, входит в состав всего живого и небесных тел (73% массы Солнца).

Степени окисления

Проявляет степени окисления: -1, 0, +1.

Получение

В промышленности водород получают различными методами:

    Конверсия с водяным паром при t = 1000 °C

Методом газификации угля, торфа, сланца

Электролизом водных растворов щелочей

Каталитическим окислением кислородом (неполное окисление)

Лабораторные методы традиционно отличаются от промышленных своей простотой. В лаборатории водород получают:

    Вытеснением водорода из кислот

Взаимодействием активных металлов с водой

Реакцией цинка или алюминия с раствором щелочи

Химические свойства

В реакциях водород проявляет себя как восстановитель и окислитель. Как восстановитель реагирует с элементами, электроотрицательность которых выше, чем у водорода:

Как восстановитель реагирует с кислородом, галогенами, азотом, серой, оксидами металлов. При комнатной температуре из перечисленных реакция идет только со фтором.

H2 + F2 → HF (со взрывом в темноте)

H2 + Cl2 → (t) HCl (со взрывом только на свету)

Na + H2 → NaH (гидрид натрия)

Химические свойства:

    Реакция с металлами

Металлы, стоящие в ряду активности до водорода, вытесняют водород из воды.

Реакции с основными и кислотными оксидами

Реагирует с основными оксидами — с образованием оснований (реакция идет, если основание растворимо), и с кислотными оксидами — с образованием соответствующих кислот. Не забывайте сохранять степени окисления!

Отмечу здесь реакцию двойного гидролиза, которая заключается в гидролизе одной соли по катиону (CrBr3), а другой — по аниону (Na2CO3).

Реакция с гидридами активных металлов

Реакции с C, CO, CH4

Cl2 + H2O → HCl + HClO (соляная и хлорноватистая кислоты — без нагревания)

Cl2 + H2O → HCl + HClO3 (соляная и хлорноватая кислоты — при нагревании)

Кристаллогидраты

Кристаллогидраты — кристаллические соединения, содержащие молекулы воды как самостоятельные структурные единицы. Вода, входящая в состав кристаллогидратов, называется кристаллической. Примеры: CaSO4*2H2O, Na2SO4*10H2O.

При нагревании кристаллогидраты теряют воду. Одним из наиболее известных кристаллогидратов является медный купорос: CuSO4*5H2O. Медный купорос имеет характерный голубой цвет, а безводный сульфат меди — белый.

В задачах бывает дана масса медного купороса. Надо помнить о том, что часто в реакции не участвует кристаллическая вода. В таком случае следует вычесть кристаллизационную воду и найти массу безводного сульфата калия.

Пероксид водорода

Представляет собой бесцветную жидкость с металлическим вкусом. Концентрированные растворы пероксида водорода взрывоопасны.

Получают пероксид водорода в реакции с пероксидами и супероксидами металлов.

В разбавленных растворах пероксид водорода легко разлагается:

Также перекись проявляет окислительные свойства:

Перекисью водорода обрабатывают раневую поверхность. Выделяющийся при разложении атомарный кислород разрушает бактериальные клетки, предотвращая осложнение в виде бактериальной инфекции.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Водород: химия водорода и его соединений

Водород

Положение в периодической системе химических элементов

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :

+1H 1s 1 1s

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Степени окисления атома водорода — от -1 до +1. Характерные степени окисления -1, 0, +1.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Н–Н

Соединения водорода

Основные степени окисления водорода +1, 0, -1.

Типичные соединения водорода:

Степень окисленияТипичные соединения
+1кислоты H2SO4, H2S, HCl и др.

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

основные соли (CuOH)2CO3

-1гидриды металлов NaH, CaH2 и др.

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием .

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом .

1.6. Водород горит , взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов . Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например , водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов .

Например , водород взаимодействует с оксидом азота (I):

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварке металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • водород используется для получения аммиака и искусственного жидкого топлива;
  • получение твердых жиров (гидрогенизация).

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Способы получения

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

2Na + H2 → 2NaH

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

CH4 — метан NH3 — аммиакH2O — вода HF –фтороводород
SiH4 — силанPH3 — фосфин H2S — сероводород HCl –хлороводород
AsH3 — арсин H2Se — селеноводород HBr –бромоводород
H2Te — теллуроводород HI –иодоводород

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например , фосфин образуется при водном гидролизе фосфида кальция:

Или при кислотном гидролизе, например , фосфида магния в соляной кислоте:

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами .

Например , фосфин реагирует с йодоводородной кислотой:

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например , хлорид фосфора (III) окисляет фосфин:

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений

Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Физические свойства

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

Химические свойства

1. Вода реагирует с металлами и неметаллами .

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

  • с магнием реагирует при кипячении:
  • алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
  • металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
  • металлы, расположенные в ряду активности от после Н , не реагируют с водой:

Ag + Н2O ≠

2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

Например , сульфид алюминия разлагается водой:

5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.

Например , фосфид кальция разлагается водой:

6. Бинарные соединения неметаллов также гидролизуются водой.

Например , фосфид хлора (V) разлагается водой:

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).


источники:

http://studarium.ru/article/162

http://chemege.ru/hydrogen/