Характеристическое уравнение реактора идеального смешения периодического действия

Реактор идеального смешения периодический РИС-П

Реагенты загружаются в начале операции. При этом процесс слагается из трех стадий: загрузки сырья, его обработки (химическое превращение) и выгрузка готового продукта. После проведения всех этих операций они повторяются вновь. Продолжительность одного цикла, проводимого в периодическом реакторе, определяется по уравнению

где τп — полное время цикла;

τ – рабочее время, затрачиваемое на проведение химической реакции;

τвсп – вспомогательное время

Реактор идеального смешения периодический называемый сокращенно РИС – П, представляет собой аппарат с мешалкой, в который периодически загружаются реагенты. В таком реакторе создается весьма интенсивное перемешивание, поэтому в любой момент времени концентрация реагентов одинакова во всем объеме аппарата и изменяется лишь во времени, по мере протекания химической реакции. Такое перемешивание можно считать идеальным, отсюда и название реактора.

Реактор идеального смешения периодический

Изменение концентрации исходного реагента А во времени и в объеме в РИС – П

Здесь NA,0 начальное количество исходного реагента А;

XA,0 – начальная степень превращения реагента А;

CA,0 – начальная концентрация реагента А в исходной смеси.

у – пространственная координата (координата места).

Периодические химические процессы по своей природе всегда являются нестационарными (т. е. неустановившимися) , т. к. в ходе химической реакции изменяются параметры процесса во времени (например, концентрация веществ), т. к. происходит накопление продуктов реакции.

Для расчета реактора надо знать его уравнение, позволяющее определить рабочее время τ, необходимое для достижения заданной степени превращения ХА, при известной начальной концентрации вещества СА,0 и известной кинетике процесса, т. е. при известной скорости химической реакции ωА .

Основанием для получения уравнения реактора любого типа является материальный баланс, составленный по одному из компонентов реакционной смеси.

В общем случае, когда концентрация компонента непостоянна в различных точках реактора или непостоянна во времени, материальный баланс составляют в дифференциальной форме для элементарного объема реактора. При этом исходят из уравнения конвективного массообмена, в которое вводят дополнительный член ωА , учитывающий протекание химической реакции.

,

где СА – концентрация реагента в реакционной смеси;

x, y, z – пространственные координаты;

D – коэффициент молекулярной и конвективной диффузии;

ωA – скорость химической реакции.

Исходя из того, что в РИС – П вследствие интенсивного перемешивания все параметры одинаковы во всем объеме реактора в любой момент времени. В этом случае производная любого порядка от концентрации по осям x, y, z равны 0, тогда

Поэтому уравнение можно записать

Если реакция протекает без изменения объема, то текущая концентрация исходного вещества будет выражаться

или

,

где знак “-” указывает на убыль вещества А.

Интегрируя это выражение в пределах изменения времени от 0 до τ и степени превращения от 0 до Х получим уравнение РИС – П

Уравнение является математическим описанием РИС – П. Исходя из этого уравнения можно определить — размеры реактора, а также исследовать эту модель с точки зрения нахождения оптимальных значений всех входящих в него параметров.

Реакторы периодического действия просты по конструкции, требуют небольшого вспомогательного оборудования. Поэтому они удобны для проведения опытных работ, изучения химической кинетики. В промышленности они обычно используются в малотоннажных производствах, для переработки дорогостоящих продуктов

Дата добавления: 2017-01-08 ; просмотров: 5626 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Материальный баланс РИС-П

Описание модели РИС-П

Реактор идеального смешения периодического действия представляет собой ёмкостный аппарат с перемешивающим устройством.
В периодический реактор все реагенты помещают до начала реакции, а продукты извлекают из него только после проведения процесса.
Общая масса реакционной смеси в реакторе остается постоянной, а изменяется лишь ее состав.
Условием идеальности работы реактора смешения периодического действия является мгновенное установление одинаковых параметров процесса в реакционном объеме аппарата в результате интенсивного перемешивания.

Схема реактора идеального смешения периодического действия:

1 – внутренний объем реактора;
2 – реакционный объем;
3 – мешалка;
4 – штуцер для опорожнения реактора;
5 – загрузочное отверстие;
Т.Н. – теплоноситель или хладагент, поступающий в теплообменную рубашку.

РИС-П работает в нестационарном режиме, т.е. в разные моменты времени условия в периодическом реакторе разные (концентрация реагентов, продуктов, скорость реакции и т. д.). Однако в каждый момент времени в силу допущения об идеальности эти параметры одинаковы во всем объеме реактора.

Исходя из допущений об идеальности РИС-П, за элементарный объем аппарата принимают весь реакционный объем (Vp). Так как РИС-П работает в нестационарном режиме, за элементарный промежуток времени принимают бесконечно малую величину .

Изменение концентрации реагента А в реакторе идеального смешения периодического действия во времени процесса и в объеме в разные моменты времени

В реальных условиях приблизиться к режиму идеального смешения можно, применяя интенсивное перемешивание реакционной смеси. Наряду с этим, форма и размеры емкостного аппарата должны быть оптимальными для уменьшения объема застойных зон.

Материальный баланс РИС-П

Материальный баланс показывает изменение количества реагента или продукта за счёт его поступления (со знаком плюс) и расходования (со знаком минус) в элементарном объёме за элементарный промежуток времени. Материальный баланс РИС-П составляют на стадию химической реакции при отсутствии подачи реагентов и отвода продуктов (NAвх = NAвых= 0).

Запишем материальный баланс РИС-П по взятому в недостатке реагенту A:

Здесь NAх.р − количество (в молях) реагента A, расходуемого на протекание химической реакции в элементарном объёме за элементарный промежуток времени,

NAнак − количество (в молях) реагента A, накопленное вэлементарном объёме за элементарный промежуток времени.

Входящие в состав материального баланса РИС-П слагаемые могут быть выражены через параметры процесса следующим образом:

(здесь WA − скорость химической реакции по компоненту A, Vр − реакционный объём реактора, − элементарный промежуток времени),

(здесь Vр − реакционный объём реактора, dCA − изменение концентрации реагента A в элементарном объёме за элементарный промежуток времени).

При подстановке полученных выражений в уравнение материального баланса РИС-П получим:

Преобразуем выражение, сократив на реакционный объём реактораVр:

Выразим отсюда элементарный промежуток времени :

Проинтегрировав на интервале от 0 до τх.р, рассчитаем полное время протекания химической реакции в РИС-П τх.р:

Учитывая, что , получаем характеристическое уравнение РИС-П:

Тепловой баланс РИС-П

Тепловой баланс показывает изменение количества теплоты за счёт её поступления (со знаком плюс) и расходования (со знаком минус) в элементарном объёме за элементарный промежуток времени. Тепловой баланс РИС-П составляют на стадию химической реакции при отсутствии подачи реагентов и отвода продуктов (Qвх = Qвых = 0).

Запишем тепловой баланс политермического РИС-П:

Здесь Qх.р − количество теплоты, выделяющейся (со знаком плюс) или поглощаемой (со знаком минус) при протекании химической реакции в элементарном объёме за элементарный промежуток времени,

Qт.о − количество теплоты, вносимой (со знаком плюс) в элементарный объём или отводимой (со знаком минус) из него за счёт теплообмена с теплоносителем или хладагентом за элементарный промежуток времени,

Qнак − количество теплоты, накопленное в элементарном объёме за элементарный промежуток времени.

Входящие в состав теплового баланса РИС-П слагаемые могут быть выражены через параметры процесса следующим образом:

(здесь ΔH − тепловой эффект химической реакции, WA − скорость химической реакции по компоненту A, Vр − реакционный объём реактора, − элементарный промежуток времени)

(здесь Kт − коэффициент теплопередачи между теплоносителем или хладагентом и реакционной массой, F − поверхность теплообмена между теплоносителем или хладагентом и реакционной массой, ΔT− положительная разность температур между теплоносителем или хладагентом и реакционной массой, − элементарный промежуток времени)

(здесь ρ − плотность реакционной массы в реакционном объёме реактора, Vр − реакционный объём реактора, cp − удельная теплоёмкость реакционной массы в реакционном объёме реактора,dT − изменение температуры в реакционном объёме реактора за элементарный промежуток времени )

При подстановке полученных выражений в уравнение теплового баланса РИС-П получим:

Преобразуем выражение, разделив на реакционный объём реактораVр:

Выразим из материального баланса РИС-П скорость реакцииWA:

Подставим это выражение в тепловой баланс и разделим все слагаемые на CAo:

Учитывая, что мольная теплоёмкость с p может быть рассчитана по формуле , получим конечное выражение теплового баланса для политермического РИС-П:

В случае адиабатического теплового режима, характеризующегося отсутствием теплообмена реакционной смеси с теплоносителем или хладагентом (тепловая изоляция реактора), тепловой баланс РИС-П примет вид:

=> вся теплота, выделяемая или поглощаемая в ходе химической реакции, идёт на изменение температуры реакционной смеси.

В случае изотермического теплового режима, характеризующегося постоянством температуры реакционной смеси (dT = 0) получим:

=> вся теплота, выделяемая или поглощаемая в ходе химической реакции, компенсируется теплообменом с хладагентом или теплоносителем.

Реакторы идеального смешения

Периодического действия

Реактор идеального смешения периодического действия представляет собой аппарат, снабженный перемешивающим устройством. Загрузка реагентов и выгрузка продуктов осуществляется периодически. Материальный баланс реактора периодического действия в соответствии с уравнением 1:

(12);

(13);

(14).

После разделения переменных и интегрирования находим:

(15).

Уравнение 15 позволяет определить необходимое время пребывания реагентов в реакторе периодического действия для достижения заданной степени превращения. При постоянном реакционном объеме уравнение приобретает вид:

(16).

В случае, когда объем реакционной массы меняется уравнение 16 примет вид :

(17).

В тех случаях, когда в РИС-П проводится реакция, порядок которой отличается от 0 и 1, интегрирование уравнения становится затруднительным, поэтому расчет рабочего времени химической реакции производится методом графического интегрирования.

В то же время, если известно время реакции, объем РИС-П можно найти, используя уравнение:

(18),

где Gv- суточная производительность;

z- запас мощности (0,1- 0,25);

φ- коэффициент заполнения (0,6 — 0,85);

τп — полное время периодического процесса ( ) Это время складывается из времени реакции ( ) и вспомогательного времени ( ), которое идет на загрузку и на выгрузку, нагревание и охлаждение реактора периодического действия и другое.

Реакторы периодического действия просты по конструкции, требуют небольшого вспомогательного оборудования, поэтому они особенно удобны в малотоннажных производствах (фармацевтических, парфюмерных и др.). Рассмотрим некоторые примеры расчетов реакторов периодического действия.

Пример 8.

Определить, какое количество вещества А можно переработать в РИС – П за сутки при проведении реакции в постоянном объеме.

порядок реакции n=1;

время загрузки и выгрузки за одну операцию – 80мин;

коэффициент заполнения φ — 0,8;

начальная концентрация исходного вещества СА,0= 20 кмоль/ м 3 ;

константа скорости реакции k= 0,03 мин -1 ;

степень превращения xA = 0,9.

Время химической реакции определяем по уравнению (16):

Определяем полное время проведения процесса.

Определяем количество циклов, которое можно осуществить за одни сутки.

.

Исходя из коэффициента заполнения реактора определяем полезный объем реактора.

.

Определяем количество вещества, которое можно переработать за один процесс:

.

Определяем количество вещества, которое можно переработать за одни сутки:

.

Задачи для самостоятельного решения

1. Процесс описывается реакцией типа 2А → R+ С с константой скорости k = 0,03 л/(моль/мин). Заданная степень превращения вещества А составляет 0,9, исходная концентрация вещества А — 2 моль/л, Объем реактора смешения периодического действия – 10 м 3 . Коэффициент заполнения реактора 0,8. Время загрузки и выгрузки за одну операцию τв= 30 мин. Определить какое количество вещества А можно переработать за сутки.

2. Процесс описывается реакцией типа А → 2R+ С с константой скорости k = 0,5 л/(моль/мин). Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А – 1,8 моль/л, Объемный расход реактора смешения периодического действия – 2 м 3 /мин. Коэффициент заполнения реактора 0,7. Полное время пребывания реагентов в реакторе реакции τп= 40 мин. Рассчитать необходимый объем реактора смешения периодического действия, степень превращения вещества А, селективность и выход целевого продукта R.

3. Жидкофазная реакция типа А → 2R имеет константу скорости k = 3,8 ч -1 . Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А – 0,8 моль/л, Объем реактора смешения периодического действия – 4 м 3 . Коэффициент заполнения реактора 0,8. Время загрузки и выгрузки за одну операцию τв= 20 мин. Определить суточную производительность по продукту R.

4. Процесс описывается последовательной реакцией типа А→R с константой скорости k = 0,14 л/(моль/мин). Объемный поток вещества А равен 4 м 3 /ч. Процесс проводится в реакторе смешения периодического действия объемом 140 л. Концентрация вещества А на входе в реактор составляет 3,4 моль/л. Время загрузки и выгрузки за одну операцию – 48 мин. Коэффициент заполнения реактора -0.7. Определить концентрации всех веществ на выходе из реактора, степень превращения вещества A и селективность по продукту R.

5. Процесс описывается реакцией типа 2А→R с константой скорости k = 0,15 л/(моль/мин). Объемный поток вещества А равен 40 л/мин. Процесс проводится в реакторе смешения периодического действия объемом 200 л. Концентрация вещества А равна 2,2 моль/л. Коэффициент заполнения реактора 0,8. Время загрузки и выгрузки за одну операцию – 40 мин. Определить производительность реактора по продукту R за сутки, степень превращения вещества A и селективность по продукту R.

6. Процесс описывается реакцией типа А + В → R c константой скорости k = 0,18 л/(моль/мин). Объемный поток вещества А равен 40 л/мин. Процесс проводится в реакторе смешения объемом 250 л. Концентрация вещества R на выходе из реактора равна 1,2 моль/л. Время загрузки и выгрузки за одну операцию – 25 мин. Коэффициент заполнения реактора -0.8. Определить концентрацию вещества А на входе в реактор и степень превращения вещества A.

7. Процесс описывается параллельной реакцией типа А + В → R+S с константами скоростей k1= 0,18 л/(моль/мин) и k2 = 0,14 л/(моль/мин). Поток вещества поступает с концентрацией 1,7 моль/л. Процесс проводится в реакторе смешения периодического действия объемом 100 л. Степень превращения вещества A составляет 0,9. Время загрузки и выгрузки за одну операцию – 10 мин. Коэффициент заполнения реактора -0.8. Определить допустимый расход вещества А.

8. Процесс описывается реакцией типа А + В → R с константой скорости k = 0,28 л/(моль/мин). Поток вещества поступает с концентрацией 1,6 моль/л. Процесс проводится в реакторе смешения объемом 180 л. Степень превращения вещества A составляет 0,7. Время загрузки и выгрузки за одну операцию – 30 мин. Коэффициент заполнения реактора -0,76.Определить производительность реактора по продукту R за час.

9. Процесс описывается параллельной реакцией типа

с константами скоростей k1= 0,15 л/(моль/мин) и k2 = 0,11 л/(моль/мин). Объемный поток вещества А с концентрацией 1,6 моль/л равен 100 л/мин. Процесс проводится в реакторе смешения периодического действия. Время загрузки и выгрузки за одну операцию – 25 мин. Коэффициент заполнения реактора -0.8. Определить объем реактора и достигаемую в нем степень превращения вещества А при условии, что производительность по продукту R составляет 4,8 кмоль/ч.

10. Процесс описывается реакцией типа А + В → R с константой скорости k = 0.48 л/(моль/мин). Объемные потоки вещества А с концентрацией 1,3 моль/л и вещества В с концентрацией 2,2 моль/л равны 100 л/мин. Процесс проводится в реакторе смешения объемом 2,2 м 3 . Концентрация вещества А на входе в реактор составляет 3,4 моль/л. Время загрузки и выгрузки за одну операцию – 40 мин. Коэффициент заполнения реактора — 0.65. Определить производительность реактора по продукту R за сутки.

11. Процесс описывается реакцией типа А + В → R с константой скорости k = 0,39 л/(моль/мин). Объемные потоки вещества А с концентрацией 1,3 моль/л и вещества В с концентрацией 1,7 моль/л равны 80 и 60 л/мин. Производительность реактора по продукту R составляет 8,64 кмоль/ч, концентрация продукта R на выходе — 0,8 моль/л. Время загрузки и выгрузки за одну операцию – 50 мин. Коэффициент заполнения реактора -0.7. Определить требуемый объем реактора смешения периодического действия.

12. Процесс описывается реакцией типа 2А → R с константой скорости k = 0,44 л/(моль/мин). Заданная степень превращения вещества А составляет 0,9, исходная концентрация вещества А — 2,3 кмоль/м 3 , производительность реактора по продукту R – 4,8 кмоль/ч. Определить требуемый объем реактора смешения периодического действия.

13. Процесс описывается реакцией типа А → 2R с константой скорости k = 0,24 мин -1 . Заданная степень превращения вещества А составляет 0,7, исходная концентрация вещества А — 1,7 кмоль/м 3 , производительность реактора по продукту R – 2,8 кмоль/ч. Время загрузки и выгрузки за одну операцию – 20 мин. Определить требуемый объем реактора смешения периодического действия и объемный расход исходной смеси..

14. Процесс описывается обратимой реакцией первого порядка типа 2А R с константами скоростей: прямой k1 = 55,4 м 3 /(кмоль/ч) и обратной k2 = 3,2 ч -1 реакций. Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А -1,4 моль/л. Объем реактора смешения периодического действия равен 0,8 м 3 . Определить производительность реактора по продукту R за час.


источники:

http://poisk-ru.ru/s27869t12.html

http://lektsii.org/14-5147.html