Характеристики и уравнения двигателей постоянного тока механическая характеристика

Характеристики двигателей постоянного тока

Классификация и основные уравнения двигателей постоянного тока

Двигатели постоянного тока находят широкое применение в тех случаях, когда по условиям работы исполнительного механизма требуется широкое изменение частоты вращения, и при этом часто имеют преимущества по сравнению с двигателями переменного тока. Используются они в металлургической промышленности, стан­костроении, системах автоматического регулирования, широко применяются на электрическом транспорте, в авиации и автомо­билестроении. Двигатели постоянного тока могут иметь мощность в пределах от нескольких ватт до нескольких тысяч киловатт.

Как и генераторы, двигатели постоянного тока классифициру­ют по способу включения обмотки возбуждения. Различают дви­гатели независимого, параллельного, последовательного и сме­шанного возбуждения. Электрические схемы этих двигателей ана­логичны схемам соответствующих генераторов. Отличие заключается в том, что ток якоря Iа в двигателях незави­симого и последовательного возбуждения равен сетевому току I, а в двигателях параллельного и смешанного возбуждения из сети потребляется и ток возбуждения Iв.

Рассмотрим основные уравнения двигателей постоянного тока.

1. Уравнение равновесия напряжений для цепи якоря в режиме двигателя:

(24.1)

Упрощение уравнения производится так же, как для ге­нераторов:

(24.2)

2. Уравнение баланса токов для двигателей параллельного и смешанного возбуждения:

(24.3)

3. Уравнение движения:

(24.4)

где J — момент инерции якоря двигателя и вращающихся частей приводного механизма; М— электромагнитный момент, развива­емый двигателем, Мс — момент сопротивления, равный сумме моментов приводимого механизма М2 и тормозного мо­мента Mo, обусловленного потерями внутри самого двигателя.

Уравнение частоты вращения двигателя можно получить если в(24.2) подставить вместо ЭДС его значение

.

Разрешив полученное уравнение относительно n получим

(24.5)

Характеристики двигателей постоянного тока

Основными характеристиками, по которым оценивают рабо­чие свойства двигателей, являются:

скоростная — зависимость частоты вращения от тока якоря,

моментная — зависимость электромагнитного момента от тока якоря,

механическая— зависимость частоты вращения от электромаг­нитного момента, п =f(M).

Двигатели независимого и параллельного возбуждения.Все ха­рактеристики этих двигателей получают при постоянных значе­ниях напряжения сети и тока возбуждения, обычно соответству­ющих своим номинальным значениям: U= U ном; IB = Iв.ном.

1. Скоростная характеристика n=f(Ia). Выражением, определя­ющим эту характеристику, является уравнение (24.5). Как следует из этого уравнения, если магнитная цепь двигателя ненасыщена и магнитный поток Ф = const, то зависимость п(Iа) линейная и с ростом тока якоря частота вращения уменьшается. Этому случаю соответствует сплошная линия на рис. 24.1.

Поток якоря вызывает умень­шение потока возбуждения ( ), то выражение для часто­ты вращения будет иметь вид

(24.6)

Рис.24.1. Скоростная(механическая)характеристика двигателя независимого возбуждения

где Ф0 — магнитный поток, соответствующий номинальному току возбуждения 1В ном при холостом ходе двигателя; — уменьшение маг­нитного потока из-за размагничива­ющего действия реакции якоря.

Как следует из формулы (24.5), при возрастании тока якоря в резуль­тате падения напряжения ча­стота вращения п снижается, а при уменьшении потока Ф — увеличи­вается. Это показано на рис. 24.1 штриховой линией.

Если относительное значение суммарного сопротивления цепи якоря больше относительного значения уменьшения потока , то частота вращения с ростом тока якоря будет уменьшаться. Если же

Двигатели последовательного и смешанного возбуждения.Осо­бенностью двигателя последовательного возбуждения является то, что его ток возбуждения равен току якоря (IВ = Iа), и поэтому для вывода выражений, определяющих вид его характеристик, пред­варительно необходимо определить связь между магнитным пото­ком Ф и током якоря Iа = Iв. Зависимость Ф =f(Ia) называется маг­нитной характеристикой. Идеальная магнитная характеристика (без учета размагничивающего действия реакции якоря) показана рис. 24.3 сплошной линией, а реаль­ная (с учетом реакции якоря) — штри­ховой.

Рис. 24.3. Магнитная характеристика двигателя последовательного вобуждения

Все характеристики двигателя по­следовательного возбуждения получа­ют при постоянном напряжении пи­тания (обычно при U= UH0M).

1. Скоростная характеристика п = f(Ia). Подставив в уравнение (24.5) выражение для потока в зависимости от тока якоря в соответствии с маг­нитной характеристикой, получим формулу скоростной характеристики двигателя. Для упрощения анализа пренебрежем насыщением магнитной цепи и будем считать магнитную ха­рактеристику линейной:

(24.9)

Рис.24,4. Скоростная характеристика двигателя последовательного возбуждения

Рис.24.5. Моментная характеристика двигателя последовательного возбуждения

Тогда, подставив выражение (24.9) в уравнение (24.5), полу­чим

(24.10)

Из уравнения (24.10) следует, что скоростная характеристика имеет гиперболический вид; на рис.24.4 она изображена сплош­ной линией. Особенностью скоростной характеристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из уравнения (24.10)следу­ет также, что ось ординат (ось п) является для этой характеристи­ки асимптотой.

Реальная скоростная характеристика с учетом размагничиваю­щего действия реакции якоря будет отклоняться от гиперболи­ческой кривой вверх, как показано штриховой линией на рис. 24.4.

2. Моментная характеристика M-f(Ia). Подставив в уравнение для момента выражение (24.9), получим формулу для электромагнит­ного момента двигателя с последовательным возбуждением:

(24.11)

Из выражения следует, что электромагнитный момент двигателя последовательного возбуждения пропорционален квад­рату тока якоря, т.е. моментная характеристика имеет параболи­ческий вид; на рис.24.5 она изображена сплошной линией. С учетом размагничивающего действия реакции якоря момент в области боль­ших токов будет меньше момента, получаемого по выражению (24.11) (штриховая линия на рис. 24.5).

3.Механическая характеристика п =f(М). Из выражения (24.11) ток якоря

(24.12)

Тогда, подставив (24.12) в (24.10), получим аналитическое вы­ражение для механической характеристики:

(24.13)

Из выражения (24.13) следует, что механическая характерис­тика двигателя последовательного возбуждения при U= const так же, как и его скоростная характеристика, имеет практически ги­перболический вид (рис.24.6).

Рис. 24.6. Механическая характеристика двигателя последовательного возбуждения

Особенностью механической харак­теристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из урав­нения (24.13) следует также, что ось ординат (ось п) является асимптотой для этой характеристики.

При частота вращения двигателя стремится к бесконеч­ности. В этом случае говорят, что двигатель идет вразнос. Чрезмер­ное повышение частоты вращения опасно для механической проч­ности якоря, так как из-за больших значений центробежных сил, возникающих в этом случае, может нарушиться целость банда­жей, удерживающих обмотку якоря, и произойти разрушение коллектора. Следовательно, нельзя допускать работу двигателя последовательного возбуждения при холостом ходе и малых на­грузках, т. е. нагрузка не должна быть меньше 25. 31 % номиналь­ной. Лишь для двигателей малой мощности (десятки ватт) допус­тима работа при холостом ходе, так как их собственный момент потерь М0 достаточно велик.

Вследствие сильной зависимости частоты вращения от нагруз­ки механические и скоростные характеристики двигателей после­довательного возбуждения называют мягкими.

Характеристики двигателей сме­шанного возбуждения занимают про­межуточное положение между соот­ветствующими характеристиками двигателей параллельного и последо­вательного возбуждения. При слабой последовательной обмотке они будут приближаться к характеристикам дви­гателя параллельного возбуждения, а при сильной — к характеристикам двигателя последовательного возбуж­дения.

Сравнение характеристик двигате­лей.Двигатели параллельного (неза­висимого) возбуждения имеют жест­кую механическую характеристику и поэтому применяются в установках, где необходимо поддерживать постоянную частоту вращения при изменении момента нагрузки, на­пример, в станках, прокатных станах, вентиляторах и т.д. Они также широко применяются при необходимости регулирования частоты вращения в широком диапазоне. В этом случае подводи­мое к якорю двигателя напряжение изменяется в широких пре­делах, в то время как напряжение возбуждения остается неиз­менным.

В двигателях последовательного возбуждения электромагнитный момент имеет квадратичную зависимость от тока якоря, поэтому их применение предпочтительно, когда требуются большие пус­ковые моменты и наблюдаются частые перегрузки по моменту. Связано это с тем, что при одних и тех же колебаниях момента сопротивления ток и потребляемая мощность у двигателей после­довательного возбуждения изменяются существенно меньше, чем у двигателей параллельного возбуждения. Двигатели последова­тельного возбуждения находят широкое применение на электриче­ском транспорте и в подъемных устройствах.

Механическая характеристика двигателя постоянного тока

Описание механистических свойств для двигателей, которые питаются от постоянного тока помогает точно узнать все свойства конкретного агрегата. Кроме того, такое описание поможет определить, соответствует ли привод всем современным требованиям.

Устройство электродвигателя постоянного тока

Особенность, объединяющая все электромоторы между собой – их строение. Каждый из них представлен ротором (элемент, приходящий в движение), расположенным наверху относительно статора (этот элемент всегда отсается неподвижным). Такие машины повсеместно используются в механизмах, ну чрезвычайно важна регулировка темпа с сохранением стабильной работы агрегата.

Конструктивно каждый из описываемых в статье приводов имеет следующий вид:

  • ротор, в строении которого присутствует много катушек со специфическим обмоточным покрытием (намотки);
  • статичный индуктор (статор), визуально имеет совершенно стандартный вид, однако характерен присутствием неких дополнений – полюсов;
  • щеточный коллектор в форме цилиндра, который расположен на валу (он имеет изоляцию из медных пластин);
  • контактные щетки (они достаточно надежно зафиксированы и используются для того, чтобы подвести достаточное количество электротока).

Контактные щетки в электроприводах с подобным питанием сделаны из графита или графита и меди. Из-за работы вала контактная группа замыкается и размыкается, что приводит к образованию искр. Передача ременного типа способствует поступлению некоторого количества энергии ко всем остальным частям агрегата.

Действие мотора

Для синхронных приборов характерна смена задач, выполняемых статором и ротором. Статор – неподвижная часть устройства, созданная, чтобы возбуждать поле, в ротор – вращающаяся часть, предназначен для преобразования энергии.

Работа якоря, при влиянии на него поля, осуществляется с помощью электродвижущей силы (ЭДС), а направление движения определяется правилом правой руки. С поворотом в другую сторону, поворачивается и ЭДС.

С помощью щеток коллектор осуществляет соединение с витковыми сторонам, что удаляет пульсирующее напряжение и приводит к образованию электротоковой величины. Пульсация снижается с помощью добавочных витков.

Механическая характеристика двигателя постоянного тока с параллельным возбуждением

Ротор привода (М) и катушка(LM) характерны последовательным включением. Они питаются от общего источника под буквой U. Электроток от ротора Iя – это и возбуждающий Iв.

Описанная выше схема определяет единственный фактор, отличающий прибор с последовательным видом подключения. Обмотка возбуждения двигателя с ПВ, обозначенная на рисунке как LM, имеет такое же сечение, как и катушка в якоре.

Когда ротор приходит во вращение, в его намотках действует электродвижущая сила (ЭДС) под буквой Е. На схеме видно, что ЭДС двигается навстречу к направлению U. В этом и заключается двигательный режим.

Величина Е вычисляется с помощью угловой скорости электропривода (ω), магнитного потока (Ф), конструктивного коэффициента (k=(p*N)/(2*π*a), в котором р – пары полюсов, N – активные проводники катушек, а – параллельные ветки обмоток ротора)):

Якорный электроток Ія и Е (а точнее, их направление) на рисунке выше изображено для режима машины.

Значения, допустимые для роторного тока, имеют некоторые ограничивающие условия. Это условия коммутации и прочности якоря. В целом, значение такого тока не должно быть выше стандартного Іян, чем в 2,5 раза, т.е.: Ія дополнительное ≤ 2,5 Iя ном.

Согласно уравнению равновесных напряжений, в действующем состоянии агрегата напряжение U, которое приложено к цепи ротора, уравновешивает снижение напряжения в этой цепи (ІяRяц) и ЭДС вращения Е:

Rяц = Rя+Rдп+Rко+Rв+Rп. Это формула суммарного сопротивления цепи якоря. Все пять показателей означают:

  • Rя – намотка якоря;
  • Rдп – намотка добавочных полюсов;
  • Rко – катушка компенсации;
  • Rв – обмотка возбуждения;
  • Rп – пусковой реостат.

В режиме, который уже становился, сопротивление катушки якоря вычисляют следующим образом:

Когда ЭДС равна нулю (как правило, в режиме пуска), ток якоря превышает допустимый диапазон значений. Чтобы ограничить пусковой электроток, используют пусковой реостат. Rп должна попадать в диапазон Iя пусковой ≤ Iя дополнительный.

Для получения аналитического выражения, с использованием которого можно вычислить параметры ДПТ, за основу нужно взять уравнение равновесия напряжений. Вместо Е (ЭДС вращения) туда нужно подставить ее значение и решить то, что получилось относительно скорости.

Итог – значение зависимости темпа привода ω от электротока Iя ω=f(Iя). Это выражение получило название электромеханической характеристики, а выглядит оно так:

ω = (U/kФ) — (Iя Rяц/kФ)

Последовательное включение якоря машины говорит о том, что Ф (магнитный поток, который создает упомянутая катушка) – это функция Iя. Ф = f(Iя) – это зависимость, получившая название «кривая намагничивания». Она нелинейная, характер по типу зоны насыщения.

Аналитическое описание это кривой пока не дели, так что аналитически точно описать

черты машины постоянного тока с ПВ невозможно.

Если пренебречь насыщением магнитной системы и сделать предположение о том, что существует линейная зависимость между магнитным потоком Ф и якорным электротоком Iя (коэффициент пропорциональности при этом – α), т.е. Ф=αIя, то вычисление вращающего момента будет выглядеть вот так:

Значение Ія при этом будет таким:

Если подставить в уравнение, которые вычисляет электромеханические значения значение якорного тока, то свойства будут называться механическими, а выглядеть так:

при этом, А=U/k*α; В= Rяц /(k*α) – константы.

Если проанализировать уравнение механистической характеристики, получим следующее:

  • ось ординат – асимптота кривой;
  • в области значений малых моментов ось ординат обладает большей крутизной.

Когда сопротивление пускового реостата равно нулю, и напряжение U равно стандартному напряжению, рабочие параметры мотора естественная.

Чтобы построить такую характеристику, достаточно использовать универсальные параметры, которые, зачастую, приводятся в каталоге серии. Они представлены в виде зависимостей n=f(Iя), а также М= f(Iя), единицы при этом относительные. Если вы знаете номинальные значения привода, его свойства легко определить в абсолютной величине.

Чтобы построить такую характеристику, достаточно использовать универсальные параметры, которые, зачастую, приводятся в каталоге серии. Они представлены в виде зависимостей n=f(Iя), а также М= f(Iя), единицы при этом относительные. Если вы знаете номинальные значения привода, его свойства легко определить в абсолютной величине.

Особенность естественных черт – резкий рост скорости с одновременным уменьшением момента сопротивления (Мс). Эта особенность является главной причиной того, почему ДПТ с ПВ никогда не включают, когда момент сопротивления меньше 15/20% от Мн. Ведь в этом случае темп мотора может быть выше, чем ω дополнительное = 2,5ω номинальное.

Объясняется эта особенность во время рассмотрения процессов в приводе, когда нагрузка начинает уменьшаться. Например, машина, работая в точке А на естественных параметрах (скорость = ω1). Если Мс1 уменьшиться до Мс2, то появится положительный момент МД, а сам электродвигатель начнет действовать с большей скоростью.

В ДПТ с последовательным возбуждением ЭДС вращения – это функция:

  • скорости, которая увеличивается (ω);
  • уменьшающегося потока (Ф).

Результат – Е, а вместе с ней и ток якоря, а также М, не будут претерпать существенные изменения по мере нарастания темпа. Это сохранит МД и только способствует дальнейшему нарастанию темпа работы машины.

А если Rп принимает любое значение, кроме нуля, то снижение скорости (статическое, Δωс) станет гораздо заметнее, чем на естественных параметрах в условиях одинакового значения обоих моментов. Наклон характеристики реостата при этом будет к оси абсцисс.

Механические свойства двигателя, возбуждение которого независимо

В электроприводе с независимым включением катушка якоря подключается к отдельному источнику питания. В таком случает к цепи этой катушки включают реостат регулирования (rрег). К цепи якоря при этом подключают реостат пуска или добавочный реостат (Rп).

Характерное отличие двигателей с отдельным подключением заключается в независимости Iв от Iя. Это связано с тем, что намотка возбуждения получает отдельное питание.

Уравнение, с помощью которого описывают ДПТ с отдельным включением намотки, выглядит следующим образом:

В этом уравнении n0 означает частоту, с которой вращается вал во время холостого хода, а Δn показывает то, как изменяется эта частота при возникновении нагрузки на мотор.

Это уравнение доказывает прямолинейность параметров ДПТ с НВ, а также факт пересечения ими оси ординат в точке n0 (холостой ход).

В то же время Δn (величина изменения частоты вращения вала машины при росте нагрузки на него) прямо пропорционально сопротивлению якорной цепи Ra =∑R + R добавочное.

Следовательно, когда сопротивление якорной цепи наиболее низкое Ra = ∑R, т. е. R добав. = 0, величина перепада частоты вращения вала Δn тоже будет наименьшим.

Параметры при этом будут жесткими (график 1).

Как мы уже узнали из предыдущего раздела, естественными свойствами электромотора переменного тока называют такие характеристики, которые были получены при номинальном напряжении на намотках якоря и намотках возбуждения. Добавочное сопротивление при этом должно отсутствовать. Это показано на графике 1, где R добав. = 0.

При изменении хотя бы одного из параметров, приведенных ниже, т.е. при несоответствии напряжения на катушках (якоря или возбуждения) их значениям, или когда сопротивление якорной цепи меняется посредством введения R добав., свойства становятся искусственными.

Такие параметры, которые были получены посредством введения в якорную цепь добавочного сопротивления, еще называют реостатными (графики 2, 3).

Оценивание регулировочных черт ДПТ опирается на парметры n = f(М). Если момент нагрузки на вал не изменяется, а добавочное сопротивление растет, частота будет уменьшаться.

Вычисление добавочного R, помогающее получить механические признаки, что соответствуют необходимой частоте, с которой вращается вал, при некоторой нагрузке, как правило, номинальной для ДПТ с НВ происходит следующим образом:

Как видно, формула требует знания напряжения в цепи якоря, В; электротока якоря при той нагрузке, которая была задана, А; требуемой частоты работы вала агрегата, оборотов/минута; частоты работы вала при холостом ходе, оборотов/минута.

Частота вращения вала при холостом ходе – пограничная частота. Если ее превысить, то прибор автоматически перейдет в режим работы генератора. Такая частота выше стандартной на столько, на сколько величина стандартного напряжения выше номинальной электродвижущей якорной силы Eя. Нагрузка на машину при этом также носит номинальное значение.

Форма характеристики зависит от величины Ф (основной магнитный поток). Если R резистора растет, то Ф уменьшается, а частота работы вала во время холостого хода растет. Вместе с этим растет и разница между частотами вращения вала.

Такой процесс неизбежно приводит к тому, что жесткость механической характеристики привода растет.

При изменении напряжения в якорной обмотке (с условием неизменности Rдоб и Rрег), следом измениться только n0. Перепад частоты будет таким же. Итог – смещение механистических параметров по оси ординат, но сохранение параллельности между ними.

Созданные условия считаются наиболее благоприятными для того, чтобы регулировать частоту вала агрегата изменением напряжения, которое подводят к якорной цепи. Этот способ регулирования частоты получил самое больше распространение во всем мире.

Механические параметры мотора со смешанным возбуждением

1. Принципиальная схе­ма включения двигателя посто­янного тока смешанного воз­буждения. 2. Зависимость момен та М и угловой скорости ω*, от тока якоря I*, для двига­теля постоянного тока смешан­ного возбуждения (в относитель­ных единицах).

В машине постоянного тока со смешанным возбуждением, как понятно из названия, есть две намотки: одна независимая (ОВ2), а вторая последовательная (ОВ1). Такая конструкция влияет и на свойства привода. Они находятся как бы посередине относительно ДПТ с последовательным и независимым возбуждением.

У электропривода со смешанным возбуждением нет аналитического выражения, что связано с изменением магнитного потока в случае уменьшения или увеличения нагрузки. Следовательно, расчет параметров обычно происходит с использованием естественной, которую можно найти в каталоге. Эти парметры можно увидеть на рисунке ниже.

Электромотор со СВ, в отличие от ДПТ с ПВ, обладает темпом идеально холостого хода в качестве конечного значения. Этот темп определяет только магнитный поток, возникший от магнитодвижущей силы намотка, которая подключена отдельно (Ф0). Вычисляется она так:

Соотношение магнитодвижущей силы независимых и последовательных обмоток отличается. Это значение зависит от серии, в которой был выпущен агрегат. Самым распространенным соотношением называют то, при котором МДС двух обмоток равны при условии номинального электротока.

Темп у электропривода постоянного тока со СВ сильно изменяется в условиях малой нагрузки, а если увеличивать ее постепенно, то уменьшаться темп будет практически по прямой, аналогично двигателю с отдельным подключением обмоток.

Связано это с тем, что большие нагрузки приводят к насыщению агрегата. В таком случае даже с изменением МДС катушек, подключенной последовательно, изменения магнитного потока совершенно не значительны.

Чтобы рассчитать реостатные свойства можно применять метод построения характеристики для двигателя постоянного электротока с параллельным возбуждением обмоток, который мы рассмотрели выше.

Торможение двигателя такого типа может проходить с помощью трех способов:

  • когда энергия отдается в сеть;
  • динамический;
  • противовключение.

В первом случае, когда энергия отдается в сеть, электротоки в якоре и последовательно подключенной намотке меняют направления своего движения, что может привести к размагничиванию агрегата. Во избежание таких последствий, когда последовательная обмотка переходит через угловую скорость со0, ее шунтируют. Это делает прямыми те параметры, которые находятся в квадранте II на рисунке ниже.

Свойства при динамичном торможении выглядят так же, потому что такое торможение происходит, как правило, только в случае, когда включена одна параллельная катушка. Магнитный поток Ф при этом является постоянным.

Когда происходит торможение посредством противовключения, признаки такого способа нелинейные. На это влияет изменяющаяся МДС в намотке, подключенной последовательно с изменяющейся нагрузкой.

Бытовое и производственное применение подобных двигателей

Машины с упомянутым типом питания, в независимости от типа подключения обмотки, получили широкое распространение во всем мире. На производствах его используют в следующих устройствах и приборах:

  • грузоподъемные краны на разных тяжелых производствах;
  • в приводах, которые требуют широкого диапазона регулирования скорости и высокого пускового момента (ими могут быть установки для подъема, различные станы (прокатные и обжимные);
  • приводы в механизмах, обеспечивающих напор, натяжение или для поворота экскаваторов;
  • в тяговых электромоторах (тепловозный и теплоходный транспорт, а также работающие в карьерах транспортные средства по типу самосвалов);
  • электростартеры в автомобилях и тракторах. Чтобы уменьшить номинальное напряжение в стартере автомобиля, использую ДПТ, которые оборудованы четырьмя щетками. Они способствуют значительному уменьшению комплексного сопротивления в якоре. В статоре при этом четырехполюсной, а сила пускового электротока в таких стартерах составляет 200 А. Они действуют в кратковременном режиме.

Двигатели с малой мощностью обычно ставят в:

  • игрушки
  • компьютерную технику
  • организационную (офисную) технику
  • инструменты с аккумуляторами.

Механические характеристики двигателей постоянного тока

Аналитическое выражение механической характеристики двига­теля постоянного тока можно получить из уравнения равнове­сия напряжений якорной цепи (при установившемся режиме)

где U — напряжение на зажимах двигателя, В; 1Я — ток в цепи якоря, A; Rя — сопротивление цепи якоря, Ом; Ф — магнитный поток двигателя, Вб; ω — угловая скорость якоря, рад/с; сд — коэффициент, зависящий от конструктивных данных двигателя. Решив уравнение (3.1) относительно угловой скорости, по­лучим уравнение скоростной характеристики двигателя

Электромагнитный вращающий момент двигателя (Н • м) пропорционален магнитному потоку и току якоря:

Из уравнения (3.3) ток якоря

Подставив в уравнение (3.2) значение тока, выраженное уравнением (3.4), получим уравнение механической характери­стики двигателей постоянного тока независимо от способа воз­буждения

Рассмотрим механические характеристики двигателей посто­янного тока в зависимости от способа возбуждения.

Двигатели постоянного тока параллельного возбуждения. Схема включения двигателя постоянного тока параллельного возбуждения приведена на рис. 3.1, а. Обмотка возбуждения ОВ может быть подключена к той же сети, что и якорь, или к отдельному источнику тока (независимое возбуж­дение). В том и другом случае ток возбуждения не зависит от процессов, происходящих в якоре двигателя и при постоян­ном напряжении сети магнитный поток можно считать посто­янным Ф = const. Обозначив сдФ=kд и подставив его в уравне­ние (3.5), получим уравнение механической характеристики дви­гателя постоянного тока параллельного возбуждения

При М=0 угловая скорость якоря

называется скоростью идеального холостого хода.

Второй член уравнения (3.6) определяет изменение угловой скорости двигателя при изменении момента

Величина Δω зависит не только от момента, но и от сопро­тивления цепи якоря. С увеличением Rя величина Δω увеличивается. С учетом уравнений (3.7) и (3.8) уравнение (3.6) можно записать в виде

Из уравнений (3.6) и (3-.9) видно, что механическая харак­теристика двигателя параллельного возбуждения является пря­мой линией, тангенс угла наклона которой определяется величи­ной Rя/kд 2

На рис. 3.1,6 приведены естественная и искусственные ме­ханические характеристики, полученные введением в цепь якоря реостата. Такие искусственные характеристики используются при пуске и торможении двигателя.

Двигатели постоянного тока последователь­ного возбуждения. Схема включения двигателя последо­вательного возбуждения приведена на рис. 3.2, а. Обмотка воз­буждения ОВ включена последовательно с якорем и по ней протекает ток якоря. Следовательно, магнитный поток двига­теля является функцией тока якоря. Эта зависимость выража­ется графически в виде кривой намагничивания, которая явля­ется нелинейной функцией и не имеет аналитического выра­жения. Поэтому нельзя получить аналитическую зависимость для механической характеристики.

Характерной особенностью двигателей последовательного возбуждения является то, что изменение магнитного потока с изменением тока якоря оказывает большое влияние на ско­рость двигателя. Это хорошо видно из уравнения скоростной характеристики

которое показывает, что с изменением магнитного потока ско­рость двигателя может изменяться в широких пределах.

Если для упрощения предположить, что магнитная цепь двигателя не насыщена и поток пропорционален току

то момент двигателя

Подставив в уравнение скоростной характеристики значе­ние Ф = Сф/я, получим

где R — внутреннее сопротивление цепи якоря, равное сумме сопротивлений обмоток якоря и возбуждения (Rя + rя).

Заменив в уравнении ток якоря его выражением из (3.10), получим уравнение механической характеристики

Уравнение (3.12) представляет собой уравнение кривой, для которой ось ординат является асимптотой. Подобная характе­ристика представлена на рис. 3.2,6. Уравнение (3.12) дает лишь общее представление о механической характеристике двига­теля. При расчетах им пользоваться нельзя, так как аналити­чески учесть намагничивание стали невозможно. Как видно на рис. 3.2,6, механическая характеристика двигателя последова­тельного возбуждения — мягкая. При уменьшении нагрузки уг­ловая скорость резко возрастает, а при М = 0 она стремится к бесконечности. В реальных двигателях ток при холостом ходе не может быть равен нулю вследствие потерь в стали и механических потерь, но угловая скорость может достигнуть опасных по условиям механической прочности значений, равных (5÷6)ωном. Поэтому холостой ход для двигателей последова­тельного возбуждения недопустим.

Двигатели постоянного тока смешанного воз­буждения. Двигатели смешанного возбуждения имеют две обмотки возбуждения (рис. 3.3). Магнитный поток двигателя определяется суммой потоков параллельной ОВпар и последова­тельной ОВпос обмоток:

Вследствие нелинейной зависимости магнитного потока от тока якоря аналитическое выражение механической характери­стики, так же как и для двигателя последовательного возбуж­дения, получить нельзя.

В зависимости от соотношения магнитных потоков обмоток возбуждения механические характеристики имеют различную жесткость. Чем больше доля магнитного потока последователь­ной обмотки, тем мягче характеристика. На рис. 3.3 приведены две естественные характеристики с различным соотношением магнитных потоков обмоток возбуждения. Обмотка параллельного возбуждения создает поток Фпар независимый от тока якоря, поэтому двигатель может работать вхолостую со ско­ростью


источники:

http://promenter.ru/elektrodvigatel/mehanicheskaya-harakteristika-dvigatelya-postoyannogo-toka

http://zdamsam.ru/b57165.html