Химические реакции в растворах электролитов уравнения

Реакции обмена в водных растворах электролитов. Ионные реакции и уравнения

Так как молекулы электролитов в растворах распадаются на ионы, то и реакции в растворах электролитов происходят между ионами.

Реакции, протекающие между ионами, называются ионными реакциями.

С участием ионов могут протекать как обменные, так и окислительно-восстановительные реакции. Рассмотрим реакции ионного обмена, например взаимодействие между растворами двух солей:

Это уравнение является молекулярным уравнением, так как формулы всех веществ записаны в виде молекул. Исходные вещества Na24 и ВаCl2 являются сильными электролитами, т. е. в растворе находятся в виде ионов. Сульфат бария — нерастворимая соль, которая выпадает в осадок, следовательно, ионы Ва 2+ и SО4 2- уходят из раствора. Хлорид натрия NaCl — растворимая соль, сильный электролит, в растворе находится в виде ионов (Na + + Сl — ). Таким образом, с учетом диссоциации сильных электролитов уравнение реакции можно записать так:

Такое уравнение называется полным ионным уравнением.

Результат взаимодействия хлорида бария с сульфатом натрия

Ионы Na + и Cl — имеются и в левой, и в правой частях уравнения, т. е. эти ионы в реакции участия не принимают, их можно исключить из уравнения:

Полученное уравнение называется сокращенным ионным уравнением. Оно показывает, что в ходе данной реакции происходит связывание ионов SO4 2- , которые находились в растворе NaSО4, и ионов Ва 2+ , которые находились в растворе ВаCl2, и в результате образовалась нерастворимая соль BaSО4.

Сокращенное ионное уравнение (3) выражает сущность не только реакции (1). Напишем уравнения нескольких реакций:

Как видим, сущность реакций (4) и (5), как и реакции (1), заключается в связывании ионов SO4 2- и Ва 2+ с образованием нерастворимой соли BaSО4.

В ионных уравнениях формулы веществ записывают в виде ионов или в виде молекул.

В виде ионов записывают формулы:

В виде молекул записывают формулы:

— малорастворимых солей(↓) AgCl, BaSO4, СаСО3, FeS и др.;

Большая часть молекул слабых электролитов в растворе не диссоциирует на ионы.

В виде молекул также записывают:

В уравнениях реакций ставят знак ↓, если среди продуктов реакции есть осадок — нерастворимые или малорастворимые вещества. Знак ↑ показывает газообразные и летучие соединения.

Реакции обмена в водных растворах электролитов могут быть:

1) практически необратимыми, т. е. протекать до конца;

2) обратимыми, т. е. протекать одновременно в двух противоположных направлениях.

1) Реакции обмена между сильными электролитами в растворах протекают до конца, или практически необратимы, когда ионы соединяются друг с другом и образуют:

а) малорастворимые вещества;

б) малодиссоциирующие вещества — слабые электролиты;

в) газообразные или летучие вещества.

Рассмотрим эти случаи.

а) Реакции с образованием малорастворимых веществ, выпадающих в осадок (↓).

Составим молекулярное и ионное уравнения реакции между нитратом серебра (I) AgNO3 и хлоридом натрия NaCl:

Эта реакция обмена необратима, потому что один из продуктов уходит из сферы реакции в виде нерастворимого вещества.

б) Реакции, идущие с образованием малодиссоциирующих веществ (слабых электролитов).

Составим молекулярное и ионное уравнения реакции нейтрализации между растворами гидроксида натрия NaOH и серной кислоты H2SO4:

или, сокращая коэффициенты, получим: ОН — + Н + = Н2О.

В результате реакции нейтрализации ионы водорода Н + и гидроксид-ионы ОН — образуют малодиссоциирующие молекулы воды. Процесс нейтрализации идет до конца, т. е. эта реакция необратима.

в) Реакции, протекающие с образованием газообразных веществ.

Составим молекулярное и ионное уравнения реакции между растворами гидроксида кальция и хлорида аммония NH4Cl:

Эта реакция обмена необратима, потому что образуются газ аммиак NH3 и малодиссоциирующее вещество вода.

2) Если среди исходных веществ имеются слабые электролиты или малорастворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают. Например:

Если исходными веществами реакций обмена являются сильные электролиты, которые при взаимодействии не образуют малорастворимых или малодиссоциирующих веществ, то такие реакции не протекают. При смешивании их растворов образуется смесь ионов, которые не соединяются друг с другом. Например:

Растворы электролитов

Электролиты

При растворении в воде некоторые вещества имеют способность проводить электрический ток.

Те соединения, водные растворы которых способны проводить электрический ток называются электролитами.

Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания).

Вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) являются слабыми электролитами.

Многие органические соединения (углеводы, спирты), растворенные воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами.

Приведем некоторые закономерности, руководствуясь которыми можно определить относятся вещества к сильным или слабым электролитам:

  1. Кислоты. К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO3, H2SO4, HClO4. Все они являются сильными электролитами. Почти все остальные кислоты, в том числе и органические являются слабыми электролитами.
  2. Основания. Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be) относятся к сильным электролитам. Слабый электролит – NH3.
  3. Соли. Большинство распространенных солей – ионных соединений — сильные электролиты. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и принципу Вант-Гоффа.

Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Сущность теории электролитической диссоциации

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Степень диссоциации электролита зависит от:

  • природы самого электролита
  • природы растворителя
  • концентрации электролита
  • температуры.

Степень диссоциации

Степень диссоциации α, показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N:

  • Степень диссоциации равна 0 α = 0 означает, что диссоциация отсутствует.
  • При полной диссоциации электролита степень диссоциации равна 1 α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на:

  • сильные (α > 0,7),
  • средней силы ( 0,3 > α > 0,7),
  • слабые (α — + bB +

    K = [A — ] a ·[B + ] b /[Aa Bb]

    Для слабых электролитов концентрация каждого иона равна произведению степени диссоциации α на общую концентрацию электролита С.

    Таким образом, выражение для константы диссоциации можно преобразовать:

    K = α 2 C/(1-α)

    Для разбавленных растворов (1-α) =1, тогда

    K = α 2 C

    Отсюда нетрудно найти степень диссоциации

    α = (K/C) 1/2

    Ионно–молекулярные уравнения

    Как составить полное и сокращенное ионные уравнения

    Рассмотрим несколько примеров реакций, для которых составим молекулярное, полное и сокращенное ионное уравнения.

    1) Пример нейтрализации сильной кислоты сильным основанием

    1. Процесс представлен в виде молекулярного уравнения.

    HCl + NaOH = NaCl + HOH

    2. Представим процесс в виде полного ионного уравнения. Т.е. запишем в ионном виде все соединения — электролиты, которые в растворе полностью ионизированы.

    H + + Cl — +Na + + OH — = Na + + Cl — + HOH

    3. После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:

    H + + OH — = HOH

    Мы видим, что процесс нейтрализации сводится к соединению H + и OH — и образованию воды.

    При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

    2) Пример реакции осаждения

    Смешаем водные растворы AgNO3 и HI:

    Молекулярное уравнениеAgNO3 + HI →AgI↓ + HNO3
    Полное ионное уравнениеAg + + NO3 — + H + + I — →AgI↓ + H + + NO3
    Сокращенное ионное уравнениеAg + + I — →AgI↓

    Процесс осаждения сводится к взаимодействию только Ag + и I — и образованию нерастворимого в воде AgI.

    Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей растворимости кислот, солей и оснований в воде. В приведенной таблице также указан цвет образуемого осадка, сила кислот и оснований и способность анионов к гидролизу.

    Пример образования летучего соединения

    Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

    Молекулярное уравнениеNa2SO3 + 2HI → 2NaI + SO2↑ + H2O
    Полное ионное уравнение2Na + + SO3 2- + 2H + + 2I — → 2Na + + 2I — + SO2↑ + H2O
    Сокращенное ионное уравнениеSO3 2- + 2H + → SO2↑ + H2O

    Отсутствие взаимодействия между растворами веществ

    При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

    Молекулярное уравнениеCaCl2 + 2NaI = 2NaCl +CaI2
    Полное ионное уравнениеCa 2+ + Cl — + 2Na + + I — = 2Na + + Cl — + Ca 2+ + 2I —
    Сокращенное ионное уравнениеотсутствует

    Условия протекания реакции (химического превращения)

    Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

    • Образование неэлектролита. В качестве неэлектролита может выступать вода.
    • Образование осадка.
    • Выделение газа.
    • Образование слабого электролита, например уксусной кислоты.
    • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
    • Образование или разрыв одной или нескольких ковалентных связей.

    Реакции в растворах электролитов

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Реакции в растворах электролитов

    Один из способов повышения интереса к изучаемому предмету – создание различных игровых ситуаций. Обычно дидактические игры используются при изучении или обобщении материала. Но, оказывается, их можно успешно применять и на уроках контроля, оценки и коррекции знаний. Игра дает возможность повторить и закрепить изученный материал. Одновременно удается исправить ошибочные представления, оценить знания учащихся по данной теме, активизировать их мыслительную деятельность, показать взаимосвязь химии с другими предметами общеобразовательного цикла.

    Знакомство учащихся с подобной формой занятий нужно провести заранее. Это помогает им более осмысленно отнестись к изучению материала, создает мощный стимул для работы с дополнительной литературой.

    Используемый учебник: И.И.Новошинский, Н.С.Новошинская «Химия. 9 класс». Время – 90 мин. Форма урока – игра-путешествие.

    Цели. Проверить знания учащихся по электролитической диссоциации; отработать умения использовать знания практически.

    Оборудование и реактивы. Пробирки, спиртовка, спички, воронки, фильтр, химические стаканы; карта «Химическая лагуна», таблица растворимости; растворы кислот, оснований и солей.

    Девиз урока. «Настоящий ученик учится открывать неизвестное с помощью известного и тем самым приближается к учителю» (В.Гёте).

    Учитель. Любой человек, независимо от возраста, любит читать про тайны и путешествия. Вот и я приглашаю вас заглянуть в тайну Химической лагуны. После долгого путешествия мы попали в Химическую лагуну, где нас встретила одна из жительниц Лагуны – вода. Выслушаем ее рассказ.

    Вода. Мы, жители Лагуны, когда-то могли общаться друг с другом, и наша жизнь была интересна химическими превращениями. Однажды нас посетил злой волшебник. Из-за его колдовства мы перестали двигаться и ходить в гости друг к другу. Нам можно помочь, но для этого необходимо выполнить пять желаний злого волшебника. Помогите нам.

    Учитель. Поможем жителям Лагуны! Разделимся на 5 команд: А, Б, В, Г и Д. Выберем капитанов команд – мозговые центры и выслушаем задания.

    Вода. Перед вами карта Лагуны. Вы видите, у нас пять деревушек: Электролитная, Диссоционная, Кислотная, Осно?вная и Солевая. Расколдовывать их будут ваши знания, которые проявятся при выполнении теоретической и практической части занятия по теме «Электролитическая диссоциация».

    Учитель. Все команды должны быть подготовлены к выполнению практического задания. Сначала выполняется теоретическая часть, затем – практическая часть.

    Теоретическая часть

    В о п р о с 1. Какие вещества называют электролитами?

    Команда А. Многие химические реакции протекают в водной среде. Например, в каждом живом организме бесконечно течет по сосудам – артериям, венам и капиллярам – волшебный раствор – кровь. Массовая доля солей в этом растворе такая же, как в первичном океане – 0,9%. Сложные физико-химические процессы, происходящие в организмах человека и животных, также протекают в растворах. Усвоение пищи связано с переводом питательных веществ в раствор. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Многие технологические процессы в химической и других отраслях промышленности, например, получение соды, удобрений, кислот, металлов, бумаги, протекают в растворах. Изучение свойств растворов занимает очень важное место в современной науке.

    Из уроков физики мы знаем, что растворы одних веществ способны проводить электрический ток, а других – нет. Чтобы опытным путем проверить эту способность у растворов различных веществ, воспользуемся установкой (рис. 1).

    Рис. 1. Установка для определения
    электрической проводимости веществ

    Если раствор, налитый в стакан, проводит электрический ток, то лампочка загорится. Чем выше эта способность, тем ярче горит лампочка. Проводят электрический ток растворы солей, щелочей, кислот. Вещества, растворы и расплавы которых проводят электрический ток, называются электролитами. Растворы сахара, спирта, глюкозы и некоторых других веществ не проводят электрический ток. Такие вещества называются неэлектролитами.

    В о п р о с 2. Почему растворы электролитов проводят электрический ток?

    Команда Б. Шведский ученый Сванте Аррениус, изучая электропроводность растворов различных веществ, в 1877 г. пришел к выводу, что причиной электропроводности является наличие в растворах ионов, которые образуются при растворении электролита в воде. Процесс распада электролита на ионы называется электролитической диссоциацией.

    Аррениус, который придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. В отличие от него русские химики И.А.Каблуков и В.А.Кистяковский применили к объяснению электролитической диссоциации химическую теорию Д.И.Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворенного вещества с водой, приводящее к образованию гидратов, которые диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т.е. «одетые» в «шубку» из молекул воды.

    Молекулы воды представляют собой диполи (два полюса), т.к. атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угловую форму (рис. 2).

    Рис. 2. Изображение молекулы воды

    Как правило, легче всего диссоциируют вещества с ионной связью и соответственно ионной кристаллической решеткой, т.к. они уже состоят из готовых ионов. При их растворении диполи воды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита. Между ионами электролита и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор (рис. 3).

    Рис. 3. Диссоциация веществ с ионной связью

    Очевидно, что последовательность процессов, происходящих при диссоциации веществ с ионной связью (солей, щелочей), будет таковой: а) ориентация молекул – диполей воды около ионов кристалла; б) гидратация (взаимодействие молекул воды с ионами поверхностного слоя кристалла); в) диссоциация (распад) кристалла электролита на гидратированные ионы. Упрощенно происходящие процессы можно выразить с помощью уравнения:

    Аналогично диссоциируют и электролиты, в молекулах которых ковалентная полярная связь (например, молекулы хлороводорода НСl), только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ионную и последовательность процессов, происходящих при этом, будет такая:

    а) ориентация молекул воды вокруг полюсов молекулы электролита;

    б) гидратация (взаимодействие молекул воды с молекулами электролита);

    в) ионизация молекул электролита;

    г) диссоциация (распад) молекул электролита на гидратированные ионы (рис. 4).

    Рис. 4. Диссоциация веществ с ковалентной полярной связью

    Упрощенное уравнение диссоциации соляной кислоты можно выразить с помощью уравнения:

    Молекула воды, к которой присоединился протон (Н + ), превратилась в ион оксония. Распад молекул в растворе, сопровождающийся появлением подвижных ионов, называется электролитической диссоциацией. «Электролитической» – понятно, потому что образуется электролит. Слово «диссоциация» обозначает распад на составные части. Следует учитывать, что в растворах электролитов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Также необходимо учитывать свойства гидратированных ионов. Негидратированный Cu 2+ – белый в безводных кристаллах CuSO4 и голубой, если он гидратирован.

    Электролиты проводят электрический ток не только при растворении в Н2O, но и в расплавленном виде, т. к. при плавлении кристалла его кристаллическая решетка разрушается и образуется жидкость, состоящая из подвижных ионов. Расплавленный едкий натр – электролит.

    В о п р о с 3. Какие процессы протекают при растворении кислот?

    Команда B. Запишем уравнения реакций, которые происходят при растворении кислот:

    H2SO4 + H2O = 2 Н 3 О + + + Q2,

    HNO3 + H2O = H3O + + + Q

    Общим для всех кислот при их взаимодействии с H2O является образование иона оксония3О + ), поэтому кислотой называется вещество, которое при взаимодействии с Н2О образует ионы оксония3O + ) или, упрощенно, ионы водорода (H + ). При этом возможна полная, необратимая диссоциация, когда в растворе молекул нет; в таком случае кислота называется сильной (азотная, серная, соляная). Другие кислоты (угольная, фосфорная, уксусная) – слабые, и в уравнении электролитической диссоциации вместо знака равенства ставят знак обратимости.

    Кроме того, они диссоциируют ступенчато:

    Итак, все кислоты объединяет то, что они при диссоциации обязательно образуют ионы водорода (Н + ), поэтому общие характерные химические свойства кислот – кислый вкус, изменение окраски индикаторов, реакции с основаниями, с основными оксидами – обусловлены именно катионами водорода:

    Zn + 2HCl = ZnCl2 + H2,

    Zn + 2H + = Zn 2+ + H2;

    CuO + 2H + = Cu 2+ + H2O;

    NaOH + HCl = NaCl + H2O,

    При написании уравнений реакций, характеризующих свойства электролита, надо помнить, что реакции в растворах электролитов идут до конца, если в результате образуется осадок, газ или малодиссоциирующие вещества.

    В о п р о с 4. Что такое основание с точки зрения электролитической диссоциации?

    Команда Г. Основанием называется вещество, которое при взаимодействии с H2O образует гидроксид-ионы (OH – ). Сильные основания (гидроксиды металлов Ia и IIa групп) диссоциируют следующим образом:

    NaOH = Na + + OH – + Q;

    Са ( ОН )2 = Ca 2+ + 2OH – + Q.

    Сu(ОН)2 CuOH + + OH – (1-я ступень),

    СuОН + Cu 2+ + OH – (2-я ступень);

    3 + H2O + OH – .

    Общие свойства щелочей – мылкость на ощупь, изменение окраски индикаторов и другие свойства – обусловлены гидроксид-ионами (ОН – ):

    2OH – + CO2 = + H2O;

    2NaOH + FeCl2 = Fe(OH)2 + 2NaCl,

    Fe 2+ + 2OH – = Fe(OH)2 .

    И здесь, как и во всех реакциях, происходящих в растворах электролитов, необходимым условием протекания реакции является удаление хотя бы некоторых ионов из раствора.

    В о п р о с 5. Что происходит с солями в растворах?

    Команда Д. При растворении в H2O (или расплавлении) соли диссоциируют с образованием ионов:

    NaCl = Na + + Cl – , NH4Cl = + Cl – ,

    Эти ионы определяют поведение солей в растворах. Соли могут взаимодействовать с кислотами:

    Na2СO3 + Ba(ОН)2 = ВаСО3 + 2NaOH,

    Ba 2+ + = BaCO3;

    c другими солями:

    NaCl + AgNO3 = Ag С l + NaNO3,

    Ag + + Cl – = AgCl .

    Во всех случаях реакции между ионами идут в сторону образования малодиссоциированных или трудно растворимых веществ.

    Практическая часть

    Задание 1. Опытным путем определите, в какой из выданных вам пробирок содержится:

    в) дистиллированная H2O.

    Решение. Используются индикаторы (табл. 1).

    Окраска индикаторов в различных средах


    источники:

    http://zadachi-po-khimii.ru/obshaya-himiya/rastvory-elektrolitov.html

    http://infourok.ru/reakcii-v-rastvorah-elektrolitov-5777751.html