Химическое уравнение можно составить для процесса фотосинтеза

Что такое фотосинтез?

Фотосинтез поглощает углекислый газ, производимый всеми дышащими организмами, и повторно вводит кислород в атмосферу. (Изображение предоставлено: KPG_Payless / Shutterstock)

Фотосинтез – это процесс, используемый растениями, водорослями и некоторыми бактериями для превращения солнечного света, углекислого газа (CO2) и воды в пищу (сахар) и кислород. Вот обзор общих принципов фотосинтеза и связанных с ним исследований, которые помогут разработать чистые виды топлива и источники возобновляемой энергии.

Виды фотосинтетических процессов

Существует два вида фотосинтетических процессов: кислородный фотосинтез и аноксигенный фотосинтез. Оба они следуют очень похожим принципам, но кислородный фотосинтез является наиболее распространенным и наблюдается у растений, водорослей и цианобактерий.

Во время кислородного фотосинтеза световая энергия переносит электроны из воды (H2O), поглощенной корнями растений, на CO2 для производства углеводов. При этом переносе СО2 «восстанавливается» или получает электроны, а вода «окисляется» или теряет электроны. Кислород вырабатывается вместе с углеводами.

Кислородный фотосинтез действует как противовес дыханию, поглощая CO2, производимый всеми дышащими организмами, и повторно вводя кислород в атмосферу.

Между тем, аноксигенный фотосинтез использует доноры электронов, которые не являются водой и не производят кислород. Этот процесс обычно происходит у бактерий, таких как зелёные серобактерии и фототрофные пурпурные бактерии. (1)

Уравнение фотосинтеза

Хотя оба вида фотосинтеза являются сложными и многоступенчатыми, общий процесс можно аккуратно резюмировать в виде химического уравнения.

Уравнение кислородного фотосинтеза:

6CO2 + 12H2O + Световая энергия → C6H12O6 + 6O2 + 6H2O

Здесь 6 молекул углекислого газа (CO2) соединяются с 12 молекулами воды (H2O), используя энергию света. Конечным результатом является образование одной молекулы углевода (C6H12O6 или глюкозы) вместе с 6 молекулами кислорода и 6 молекулами воды.

Точно так же различные реакции аноксигенного фотосинтеза можно представить в виде единой обобщенной формулы:

CO2 + 2H2A + световая энергия → [CH2O] + 2A + H2O

Буква A в уравнении является переменной, а H2A представляет собой потенциального донора электронов. Например, «A» может обозначать серу в сероводороде (H2S), являющемся донором электронов. (2)

Как происходит обмен диоксида углерода и кислорода?

Устьица являются привратниками листа, обеспечивая газообмен между листом и окружающим воздухом. (Изображение предоставлено: Уолдо Нелл / 500px / Getty Images)

Растения поглощают CO2 из окружающего воздуха и выделяют воду и кислород через микроскопические поры на своих листьях, называемые устьицами. Устьица служат воротами газообмена между внутренней частью растений и внешней средой.

Когда устьица открываются, они пропускают СО2; однако, когда устьица открыты, они выделяют кислород и позволяют выйти водяным парам. Чтобы уменьшить потерю воды, устьица закрываются, но это означает, что растение больше не может получать CO2 для фотосинтеза. Этот компромисс между увеличением количества CO2 и потерей воды представляет собой особую проблему для растений, растущих в жарких и засушливых условиях.

Как растения поглощают солнечный свет для фотосинтеза?

Растения содержат особые пигменты, поглощающие световую энергию, необходимую для фотосинтеза.

Хлорофилл является основным пигментом, используемым для фотосинтеза и придающим растениям зеленый цвет. Хлорофилл поглощает красный и синий свет для использования в фотосинтезе и отражает зеленый свет. Хлорофилл – большая молекула, для производства которой требуется много ресурсов; как таковой, он разрушается к концу жизни листа, и большая часть азота (один из строительных блоков хлорофилла) всасывается обратно в растение. Когда осенью листья теряют свой хлорофилл, другие пигменты листьев, такие как каротиноиды и антоцианы, начинают проявлять свой истинный цвет. В то время как каротиноиды в основном поглощают синий свет и отражают желтый, антоцианы поглощают сине-зеленый свет и отражают красный. (3, 4)

Молекулы пигмента связаны с белками, что позволяет им гибко двигаться навстречу свету и друг другу. Большое скопление из 100–5000 молекул пигмента составляет «антенну». Эти структуры эффективно улавливают световую энергию солнца в виде фотонов. (5)

С бактериями ситуация немного иная. В то время как цианобактерии содержат хлорофилл, другие бактерии, например, пурпурные бактерии и зелёные серобактерии, содержат бактериохлорофилл, поглощающий свет для аноксигенного фотосинтеза.

Где в растении происходит фотосинтез?

Для фотосинтеза растениям нужна энергия солнечного света. (Изображение предоставлено: Shutterstock)

Фотосинтез происходит в хлоропластах, типе пластид (органеллы с мембраной), которые содержат хлорофилл и в основном обнаруживаются в листьях растений. Двумембранные пластиды в растениях и водорослях известны как первичные пластиды, в то время как мультимембранные пластиды, обнаруженные в планктоне, называются вторичными пластидами. (6)

Хлоропласты похожи на митохондрии, энергетические центры клеток, тем, что у них есть собственный геном или набор генов, содержащихся в кольцевой ДНК. Эти гены кодируют белки, необходимые для органелл и фотосинтеза. (7)

Внутри хлоропластов находятся пластинчатые структуры, называемые тилакоидами, которые отвечают за сбор фотонов света для фотосинтеза. Тилакоиды уложены друг на друга в столбцы, известные как граны. Между гранами находится строма – жидкость, содержащая ферменты, молекулы и ионы, в которой происходит образование сахара. (8)

В конечном итоге световая энергия должна быть передана комплексу пигмент-белок, который может преобразовать ее в химическую энергию в форме электронов. В растениях световая энергия передается пигментам хлорофилла. Преобразование в химическую энергию осуществляется, когда пигмент хлорофилла изгоняет электрон, который затем может перейти к соответствующему получателю.

Пигменты и белки, которые преобразуют энергию света в химическую энергию и запускают процесс переноса электронов, известны как реакционные центры.

Реакции фотосинтеза растений делятся на две основные стадии: те, которые требуют присутствия солнечного света (светозависимые реакции), и те, которые не требуют наличия солнечного света (светонезависимые реакции). В хлоропластах протекают оба типа реакций: светозависимые реакции в тилакоиде и светонезависимые реакции в строме.

Светозависимые реакции

Когда растение поглощает солнечную энергию, ему сначала необходимо преобразовать ее в химическую энергию.

Когда фотон света попадает в реакционный центр, молекула пигмента, такая как хлорофилл, высвобождает электрон.

Освободившемуся электрону удается уйти, путешествуя по цепи переноса электронов, которая генерирует энергию, необходимую для производства АТФ (аденозинтрифосфата, источника химической энергии для клеток) и НАДФН – оба из которых необходимы на следующем этапе фотосинтеза в восстановительном пентозофосфатном цикле. «Электронная дыра» в исходном пигменте хлорофилла заполняется за счет взятия электронов из воды. В результате расщепления молекул воды в атмосферу выделяется кислород.

Светонезависимые реакции: восстановительный пентозофосфатный цикл

Фотосинтез включает в себя процесс, называемый восстановительным пентозофосфатным циклом, для использования энергии, накопленной в результате светозависимых реакций, для превращения CO2 в сахара, необходимые для роста растений. (Изображение предоставлено: wikipedia.org)

Восстановительный пентозофосфатный цикл, или Цикл Кальвина, использует энергию, накопленную в результате светозависимых реакций, для превращения CO2 в сахара, необходимые для роста растений. Эти реакции происходят в строме хлоропластов и не запускаются непосредственно светом – отсюда их название «светонезависимые реакции». Однако они все еще связаны со светом, поскольку цикл Кальвина подпитывается АТФ и НАДФН (оба из ранее упомянутых светозависимых реакций). (9)

Во-первых, CO2 соединяется с рибулозо-1,5-бисфосфатом (РуБФ), который является пятиуглеродным акцептором. Затем он расщепляется на две молекулы трехуглеродного соединения – 3-фосфоглицериновой кислоты (3-ФГК). Реакция катализируется ферментом РуБФ-карбоксилаза/оксигеназа, также известным как рубиско.

Вторая стадия цикла Кальвина включает преобразование 3-ФГК в трехуглеродный сахар, называемый глицеральдегид-3-фосфатом (Г3Ф) – в процессе используются АТФ и НАДФН. Наконец, в то время как одни молекулы Г3Ф используются для производства глюкозы, другие рециркулируют обратно, чтобы получить РуБФ, который используется на первом этапе для принятия CO2. На каждую молекулу Г3Ф, которая производит глюкозу, пять молекул рециркулируют с образованием трех акцепторных молекул РуБФ.

Фотодыхание

Рубиско может иногда связывать кислород вместо СО2 в цикле Кальвина, который тратит энергию – процесс, известный как фотодыхание. Фермент развился в то время, когда уровни CO2 в атмосфере были высокими, а кислород был редким, поэтому у него не было причин проводить различие между ними. (10, 11)

Фотодыхание представляет собой особенно большую проблему, когда устьица растений закрыты для экономии воды и поэтому больше не поглощают CO2. У рубиско нет другого выбора, кроме как вместо этого восстанавливать кислород, что, в свою очередь, снижает фотосинтетическую эффективность растения. Это означает, что будет производиться меньше пищи растения (сахара), что может привести к замедлению роста и, следовательно, к уменьшению размеров растений.

Это большая проблема для сельского хозяйства, так как меньшие растения означают меньший урожай. На сельскохозяйственную отрасль оказывается растущее давление с целью повышения продуктивности растений, чтобы прокормить постоянно растущее население Земли. Ученые постоянно ищут способы повысить эффективность фотосинтеза и уменьшить частоту неэффективного фотодыхания.

Виды фотосинтеза

Существует три основных вида фотосинтетических путей: C3, C4 и CAM. Все они производят сахар из CO2, используя цикл Кальвина, но каждый путь немного отличается.

Три основных типа фотосинтетических путей – это C3, C4 и CAM. Большинство растений используют фотосинтез C3, включая рис и хлопок. (Изображение предоставлено: Эндрю ТБ Тан / Getty Images)

C3-фотосинтез

Большинство растений используют C3-фотосинтез, включая зерновые (пшеница и рис), хлопок, картофель и сою. C3-фотосинтез назван в честь трехуглеродного соединения, называемого 3-фосфоглицериновой кислотой (3-ФГК), которое он использует во время цикла Кальвина. 3-ФГК образуется, когда рубиско фиксирует CO2, образуя трехуглеродное соединение. (12)

C4-фотосинтез

Такие растения, как кукуруза и сахарный тростник, используют C4-фотосинтез. В этом процессе используется промежуточное соединение, состоящее из четырех атомов углерода (называемое оксалоацетатом), которое превращается в малат. Затем малат транспортируется в проводящий пучок, где он разрушается и выделяет CO2, который затем фиксируется рубиско и превращается в сахара в цикле Кальвина (точно так же, как фотосинтез C3). Растения C4 лучше приспособлены к жаркой и сухой окружающей среде и могут продолжать удерживать углерод, даже когда их устьица закрыты (поскольку у них есть умное решение для хранения), что снижает их риск фотодыхания. (13)

CAM-фотосинтез

Кислотный метаболизм толстянковых (CAM) обнаруживается у растений, адаптированных к очень жарким и сухим условиям, таких как кактусы и ананасы. Когда устьица открываются для поглощения CO2, они рискуют потерять воду во внешнюю среду. Из-за этого растения адаптировались в очень засушливых и жарких условиях. Одна из адаптаций – CAM, при котором растения открывают устьица ночью (когда температура ниже и потеря воды менее опасна). CO2 попадает в растения через устьица, фиксируется в оксалоацетат и превращается в малат или другую органическую кислоту (как в пути C4). Затем CO2 доступен для светозависимых реакций в дневное время, и устьица закрываются, что снижает риск потери воды. (14)

Как фотосинтез может бороться с изменением климата

Фотосинтезирующие организмы – это возможное средство для производства экологически чистого топлива, такого как водород. Группа исследователей из Университета Турку в Финляндии изучила способность зеленых водорослей производить водород. Зеленые водоросли могут выделять водород в течение нескольких секунд, если они сначала подвергаются воздействию темных анаэробных (бескислородных) условий, а затем подвергаются воздействию света. Как сообщается в их исследовании 2018 года, опубликованном в журнале Energy & Environmental Science, исследователи разработали способ продлить производство водорода зелеными водорослями до трех дней. (15)

Ученые также добились успехов в области искусственного фотосинтеза. Например, группа исследователей из Калифорнийского университета в Беркли разработала искусственную систему для улавливания CO2 с использованием нанопроволоки или проводов диаметром в несколько миллиардных долей метра. Проволока проникает в систему микробов, которые уменьшают CO2 в топливо или полимеры, используя энергию солнечного света. Команда опубликовала свой дизайн в 2015 году в журнале Nano Letters. (16)

В 2016 году члены этой же группы опубликовали исследование в журнале Science, в котором описана еще одна искусственная фотосинтетическая система, в которой специально сконструированные бактерии использовались для создания жидкого топлива с использованием солнечного света, воды и CO2. В общем, растения могут использовать только около одного процента солнечной энергии и использовать ее для производства органических соединений во время фотосинтеза. Напротив, искусственная система исследователей смогла использовать 10% солнечной энергии для производства органических соединений. (17)

В 2019 году исследователи написали в Journal of Biological Chemistry, что цианобактерии могут повысить эффективность фермента рубиско. Ученые обнаружили, что эти бактерии особенно хороши в концентрации СО2 в своих клетках, что помогает предотвратить случайное связывание рубиско с кислородом. Понимая, как бактерии достигают этого, ученые надеются внедрить этот механизм в растения, чтобы повысить эффективность фотосинтеза и снизить риск фотодыхания. (18)

Непрерывные исследования природных процессов помогают ученым в разработке новых способов использования различных источников возобновляемой энергии, а использование силы фотосинтеза является логическим шагом для создания экологически чистых и углеродно-нейтральных видов топлива.

Работает экологическим и научным журналистом более 15 лет. Пишет о науке, культуре, космосе и устойчивом развитии. Внештатный автор сайта «Знание – свет».

Фотосинтез. Общее уравнение фотосинтеза

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез – процесс, при котором происходит поглощение электромагнитной энергии солнца хлорофиллом и вспомогательными пигментами и превращение её в химическую энергию, поглощение углекислого газа из атмосферы, восстановление его в органические соединения и возвращение кислорода в атмосферу.

В процессе фотосинтеза из простых неорганических соединений (СО2 , Н2О) строятся различные органические соединения. В результате происходит перестройка химических связей: вместо связей С – О и Н – О возникают связи C – C и C – H, в которых электроны занимают более высокий энергетический уровень. Таким образом, богатые энергией органические вещества, которыми питаются и за счет которых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С02, из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, — это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Фотосинтез включает как световые, так и темновые реакции. Был проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят не только реакции, идущие с использованием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующие доказательства существования темновых реакций в процессе фотосинтеза:

1) фотосинтез ускоряется с повышением температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Особенно резко зависимость фотосинтеза от температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями;

2) эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. При этом для более эффективного использования энергии света длительность темновых промежутков должна значительно превышать длительность световых.

Пигменты фотосинтеза

Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты — это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины.

К группе хлорофиллов относят органические соединения, которые содержат 4 пиррольных кольца, соединённых атомами магния и имеющие зелёную окраску.

В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлорофилл с обнаружен в диатомовых водорослях, хлорофилл d — в красных водорослях.

Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий. Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872—1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде.

Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком — мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b — желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.

Каротиноиды — это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротинойды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента — каротин (оранжевый) и ксантофилл (желтый). В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплексов с белками. Каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Фикобилины — красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и цианобактерий наряду с хлорофиллом а содержат фикобилины. В основе химического строения фикобилинов лежат четыре пиррольные группировки.

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин — это окисленный фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495— 565 нм, а фикоцианин — 550— 615 нм. Сравнение спектров поглощения фикобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления организмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.

Свойства хлорофилла

Все хлорофиллы являются магниевыми солями пиррола. В центре молекулы хлорофилла находятся магний и четыре пиррольных кольца, соединенные друг с другом метановыми мостиками.

По химическому строению хлорофиллы — сложные эфиры дикарбоновой органической кислоты — хлорофиллина и двух остатков спиртов — фитола и метилового.

Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех пиррольных пятичленных колец, соединенных между собой углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо, которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.

Хлорофилл в отличается от хлорофилла а только тем, что вместо метальной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилла имеет сине-зеленую окраску, а хлорофилл в — светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через хлорофилл а.

Флуоресценция — это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины — волны возбуждающего света. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску — это явление флуоресценции.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.

Фотосинтез – что это, определение, как происходит, фазы, значение, фото и видео

Леса считаются «зелеными легкими планеты» не напрасно. Благодаря постоянной работе растений, фотосинтезу, все живое на Земле имеет возможность дышать. Более того, без них простейшие организмы не смогли бы эволюционировать и сложно представить, какой облик имела бы планета. Что такое фотосинтез и как происходит данный процесс, рассмотрим в деталях.

Что такое фотосинтез?

Фотосинтез – биохимический процесс, во время которого с помощью особых пигментов растений и энергии света из неорганических веществ (углекислого газа, воды) возникают органические. Это один из наиболее важных процессов, за счет которого появилось и продолжает существовать большинство организмов на планете.

Распределение фотосинтеза

Значение фотосинтеза для жизни на Земле

Без фотосинтеза вместо множества живых организмов на нашей планете существовали бы одни лишь бактерии. Именно энергия, полученная в результате данного химического процесса, позволила бактериям эволюционировать.

Любые природные процессы нуждаются в энергии. Она поступает от Солнца. Но правильную форму солнечный свет приобретает лишь после того, как преобразовывается растениями.

Растения используют лишь часть энергии, а остальную накапливают в себе. Ими питаются травоядные животные, которые являются пищей для хищников. В ходе образовавшейся цепочки каждое звено получает необходимые ценные вещества и энергию.

Растения, наподобие солнечных панелей, преобразовывают энергию света

Кислород, вырабатываемый в ходе реакции, необходим для дыхания всем существам. Дыхание представляет процесс, противоположный фотосинтезу. При этом органические вещества окисляются, разрушаются. Полученная энергия используется организмами для выполнения различных жизненно необходимых задач.

В период существования планеты, когда растений было мало, кислород практически отсутствовал. Примитивные формы жизни получали минимум энергии другими способами. Ее было слишком мало для развития. Поэтому дыхание за счет кислорода открыло более широкие возможности.

Еще одна функция фотосинтеза – защита организмов от воздействия ультрафиолетового света. Речь идет об озоновом слое, находящемся в зоне стратосферы на высоте около 20-25 км. Образуется он за счет кислорода, который превращается в озон под действием солнечного света. Без этой защиты жизнь на Земле ограничивалась бы только подводными организмами.

Озоновый слой

Организмы выделяют во время дыхания углекислый газ. Он является обязательным элементом фотосинтеза. В противном случае углекислый газ просто накапливался бы в верхних слоях атмосферы, значительно усиливая парниковый эффект.

Это серьезная экологическая проблема, суть которой состоит в повышении температуры атмосферы с негативными последствиями. К ним относится изменение климата (глобальное потепление), таяние ледников, повышение уровня Мирового океана и др.

  • выделение кислорода;
  • образование энергии;
  • образование питательных веществ;
  • создание озонового слоя.

Определение и формула фотосинтеза

Термин «фотосинтез» произошел от сочетания двух слов: фото и синтез. В переводе с древнегреческого они означают «свет» и «соединение» соответственно. Таким образом, энергия света превращается в энергию связей органических веществ.

Упрощенная схема фотосинтеза

Углекислый газ + вода + свет = углевод + кислород.

Научная формула фотосинтеза:

Фотосинтез происходит так, что непосредственный контакт воды и СО2 не наблюдается.

Значение фотосинтеза для растений

Растениям для роста и развития требуются органические вещества, энергия. Благодаря фотосинтезу они обеспечивают себя данными компонентами. Создание органических веществ – основная цель фотосинтеза для растений, а выделение кислорода считается побочной реакцией.

Образование органических веществ

Как происходит фотосинтез?

Фотосинтез протекает непосредственно в зеленых частях растений – хлоропластах. Они входят в состав растительных клеток. Хлоропласты содержат вещество – хлорофилл. Это и есть тот основной фотосинтетический пигмент, благодаря нему происходит вся реакция. Кроме того, хлорофилл определяет зеленый цвет растительности.

Для этого пигмента характерна способность поглощать свет. А в клетках растения запускается настоящая биохимическая «лаборатория», в которой вода и СО2 превращаются в кислород, углеводы.

Вода поступает через корневую систему растения, а газ проникает непосредственно в листья. Свет выступает в качестве источника энергии. Когда частица света действует на молекулу хлорофилла, происходит ее активация. В молекуле воды H2O кислород (O) остается невостребованным. Таким образом, он становится побочным для растений, но таким важным для нас, продуктом реакции.

Фазы фотосинтеза

Фотосинтез делится на две стадии: световую и темновую. Протекают они одновременно, но в разных частях хлоропласта. Название каждой фазы говорит само за себя. Световая или светозависимая фаза происходит только при участии частиц света. Темновой или светонезависимой фазе наличие света не требуется.

Прежде чем рассматривать каждую фазу подробнее, стоит разобраться в строении хлоропласта, поскольку оно определяет суть и место протекания стадий. Хлоропласт является разновидностью пластид и внутри клетки расположен отдельно от остальных ее компонентов. Он имеет форму зернышка.

Строение хлоропласта

Составляющие части хлоропласта, участвующие в фотосинтезе:

  • 2 мембраны;
  • строма (внутренняя жидкость);
  • тилакоиды;
  • люмены (просветы внутри тилакоидов).

Световая фаза фотосинтеза

Протекает на тилакоидах, точнее, их мембранах. Когда на них попадает свет, выделяются и накапливаются негативно заряженные электроны. Таким образом, фотосинтетические пигменты лишаются всех электронов, после чего наступает очередь распада молекул воды:

При этом образованные протоны водорода имеют положительный заряд и копятся на внутренней мембране тилакоида. В итоге протоны с зарядом плюс и электроны с зарядом минус разделены лишь мембраной.

Происходит выработка кислорода, как побочного продукта:

В определенный момент фазы электронов и протонов водорода становится слишком много. Тогда в работу вступает фермент – АТФ-синтаза. Его задача состоит в том, чтобы переместить протоны водорода из мембраны тилакоида в жидкую среду хлоропласта – строму.

Фазы фотосинтеза

На этом этапе водород попадает в распоряжение другого переносчика – НАДФ (сокращение от никотинамиддинуклеотидфосфат). Это также разновидность фермента, который ускоряет окислительные реакции в клетках. В данном случае его работа состоит в транспортировке протонов водорода в реакции углеводов.

На данной стадии происходит процесс фотофосфолирования, во время него вырабатывается огромное количество энергии. Ее источником является АТФ – аденозинтрифосфорная кислота.

  1. Попадание кванта света на хлорофилл.
  2. Выделение электронов.
  3. Выделение кислорода.
  4. Образование НАДФН-оксидазы.
  5. Образование энергии АТФ.

Темновая фаза фотосинтеза

Светонезависимая фаза происходит непосредственно в строме. Она представляет собой ряд ферментативных реакций. Углекислый газ, поглощенный на световой стадии, растворился в воде, а на этом этапе он восстанавливается до глюкозы. Также вырабатываются сложные органические вещества.

Реакции темновой фазы делятся на три основных типа и зависят от вида растений (точнее, их метаболизма), в клетках которых происходит фотосинтез:

  • С3-растения;
  • С4-растения;
  • САМ-растения.

Типы реакций темновой фазы

К С3-растениям относится большая часть культур сельскохозяйственного назначения, которые растут в умеренном климате. В ходе фотосинтеза у них углекислый газ становится фосфоглицериновой кислотой.

К С 4 -растениям принадлежат субтропические и тропические виды, преимущественно сорняки. Для них характерна трансформация углекислого газа в оксалоацетат. САМ-растения – категория растений, которым не хватает влаги. Они отличаются особенным видом фотосинтеза – CАМ.

С3-фотосинтез

Наиболее распространенным является С3-фотосинтез, который также именуется циклом Кальвина – в честь американского ученого Мелвина Кальвина, который внес огромный вклад в изучение данных реакций и получил за это Нобелевскую премию.

Растения называются С3 из-за того, что во время реакций темновой фазы образуются 3-углеродные молекулы 3-фосфоглицериновой кислоты – 3-PGA. Непосредственное участие принимают различные ферменты.

Цикл Кальвина

Чтобы образовалась полноценная молекула глюкозы, должно пройти 6 циклов реакций светонезависимой фазы. Углевод – главный продукт фотосинтеза в цикле Кальвина, но помимо него вырабатываются жирные и аминокислоты, а также гликолипиды. У С3 растений фотосинтез проходит исключительно в клетках мезофилла.

Главный недостаток С3-фотосинтеза

Растения, относящиеся к группе С3, характеризуются одним существенным недостатком. Если в окружающей среде отмечается недостаточный уровень влаги, способность к фотосинтезу существенно снижается. Это происходит по причине фотодыхания.

Дело в том, что при невысокой концентрации углекислого газа в хлоропластах (меньше 50:1 000 000) вместо фиксации углерода происходит фиксация кислорода. Специальные ферменты существенно замедляются и расходуют солнечную энергию впустую.

Одновременно с этим замедляется рост и развитие растения, поскольку оно недополучает органические вещества. Также не происходит выброс кислорода в атмосферу.

С 4 -фотосинтез

В отличие от C3-синтеза, здесь реакции фиксации углекислого газа осуществляются в различных клетках растений. Эти виды растений способны справляться с проблемой фотодыхания, и делают они это при помощи двухэтапного цикла.

С одной стороны поддерживается высокий показатель углекислого газа, а с другой – контролируется низкий уровень кислорода в хлоропластах. Подобная тактика позволяет растениям С 4 избежать фотодыхания и связанных с ним сложностей. Представителями растений данной группы являются сахарный тростник, кукуруза, просо и др.

По сравнению с растениями С3 они способны намного интенсивнее выполнять процессы фотосинтеза при условии высокой температуры и недостатка влаги. На первом этапе углекислый газ фиксируется в клетках мезофилла, где образуется 4-углеродная кислота. Затем кислота переходит в оболочку и распадается там на 3-углеродное соединение и углекислый газ.

С4-фотосинтез

На втором этапе полученный углекислый газ начинает работать в цикле Кальвина, где вырабатывается глицеральдегид-3-фосфат и углеводы, необходимые для энергетического обмена.

Благодаря двухэтапному фотосинтезу в растениях С 4 образуется достаточное для цикла Кельвина количество углекислого газа. Поэтому ферменты работают в полную силу и не растрачивают энергию напрасно.

Но у и этой системы есть свои минусы. В частности расходуется больший объем энергии АТФ – она необходима для трансформации 4-углеродных кислот в 3-углеродные и в обратном направлении. Таким образом, С3-фотосинтез всегда продуктивнее, чем С 4 при должном количестве воды и света.

Что влияет на скорость фотосинтеза?

Фотосинтез может протекать с различной скоростью. Этот процесс зависит от условий окружающей среды:

  • вода;
  • длина волны света;
  • углекислый газ;
  • температура.

График скорости фотосинтеза

Вода является основополагающим фактором, поэтому при ее недостатке реакции замедляются. Для фотосинтеза наиболее благоприятны волны красного и сине-фиолетового спектра. Также предпочтительнее высокая степень освещенности, но лишь до определенного значения – при его достижении связь между освещенностью и скоростью реакции исчезает.

Высокая концентрация углекислого газа обеспечивает быстрые фотосинтетические процессы и наоборот. Определенная температура важна для ферментов, которые ускоряют реакции. Идеальные условия для них – около 25-30℃.

Фотодыхание

Дышать необходимо всем живым существам, и растения не являются исключением. Однако этот процесс у них происходит немного иначе, чем у людей и животных, отчего носит название фотодыхания.

В целом, дыхание – физический процесс, во время которого живой организм и окружающая его среда обмениваются газами. Как и всему живому, растениям для дыхания нужен кислород. Но потребляют они его гораздо меньше, чем вырабатывают.

В ходе фотосинтеза, который происходит только при солнечном свете, растения создают для себя пищу. Во время фотодыхания, которое осуществляется круглосуточно, эти питательные вещества ими поглощаются с целью поддержки метаболизма внутри клеток.

Кислород (как и углекислый газ) проникает в клетки растений через особые отверстия – устьица. Они располагаются в нижней части листочков. На одном листе может располагаться около 1000 устьиц.

Устьица растения

Газообмен растений в зависимости от освещенности

Процесс газообмена при разной освещенности представлен следующим образом:

  1. Яркий свет. Во время фотосинтеза используется углекислый газ. Растения выделяют больше кислорода, чем потребляют. Его излишки попадают в атмосферу. Углекислый газ потребляется быстрее, чем выделяется дыханием. Неиспользованные углеводы запасаются растением впрок.
  2. Тусклый свет. Газообмен с окружающей средой не происходит, поскольку растение потребляет весь кислород, который производит.
  3. Отсутствие света. Происходят только процессы дыхания. Углекислый газ выделяется, а кислород потребляется.

Хемосинтез

Некоторые живые организмы тоже способны к образованию моноуглеводов из воды и углекислого газа, при этом они не нуждаются в солнечном свете. К ним относятся бактерии, а процесс преобразования энергии называется хемосинтезом.

Хемосинтез являет собой процесс, во время которого синтезируется глюкоза, но вместо солнечной энергии используются химические вещества. Протекает он в зонах с достаточно высокой температурой, подходящей для работы ферментов, и отсутствием света. Это могут быть области вблизи гидротермальных источников, утечек метана на морских глубинах и др.

Хемосинтез

Источником энергии для бактерий выступают химические связи метана и сероводорода. В результате хемосинтеза возникает сера и ее соединения в качестве побочных продуктов реакции.

История открытия фотосинтеза

История открытия и изучения фотосинтеза берет начало в 1600 г., когда Ян Батист ван Гельмонт решил разобраться в актуальном на тот момент вопросе: чем питаются растения и откуда они черпают полезные вещества?

В то время считалось, что источником ценных элементов является почва. Ученый поместил в емкость с землей веточку ивы, но предварительно измерил их вес. На протяжении 5 лет он ухаживал за деревом, поливая его, после чего снова провел измерительные процедуры.

Выяснилось, что вес земли снизился на 56 г, однако деревце стало в 30 раз тяжелее. Это открытие опровергло мнение о том, что растения питаются почвой и породило новую теорию – водного питания.

Опыт Яна Батиста ван Гельмонта

В дальнейшем многие ученые пытались ее опровергнуть. Например, Ломоносов считал, что частично структурные компоненты попадают к растениям через листья. Он руководствовался растениями, которые успешно растут на засушливых территориях. Однако доказать эту версию не удалось.

Ближе всего к реальному положению вещей оказался Джозеф Пристли – ученый-химик и священник по совместительству. Однажды он обнаружил погибшую мышь в перевернутой вверх дном банке, и этот случай заставил его провести в 1770-х годах ряд опытов с грызунами, свечами и емкостями.

Пристли обнаружил, что свеча всегда быстро тухнет, если накрыть ее сверху банкой. Также не может выжить и живой организм. Ученый пришел к выводу, что существуют некие силы, которые делают воздух пригодным для жизни, и попытался связать это явление с растениями.

Он продолжил ставить опыты, но в этот раз попробовал поместить под стеклянную емкость горшочек с растущей мятой. К огромному удивлению, растение продолжало активно развиваться. Тогда Пристли поместил под одну банку растение и мышь, а под вторую – только животное. Результат очевиден – под первой емкостью грызун остался невредим.

Опыт Пристли

Достижение химика стало мотивацией для других ученых всего мира повторить эксперимент. Но загвоздка была в том, что священник проводил опыты в дневное время. А, к примеру, аптекарь Карл Шееле – ночью, когда появлялось свободное время. В итоге, ученый обвинил Пристли в обмане, ведь его подопытные не переносили эксперимент с растением.

Между химиками разразилось настоящее научное противостояние, которое принесло существенную пользу и дало возможность сделать еще одно открытие – чтобы растения восстанавливали воздух, им нужен солнечный свет.

Конечно, фотосинтезом это явление тогда еще никто не называл, да и оставалось немало вопросов. Однако в 1782 ботаник Жан Сенебье смог доказать, что при наличии солнечного света растения способны расщеплять углекислый газ на клеточном уровне. А в 1864, наконец, появилось экспериментальное доказательство того, что растения поглощают углекислый газ и выделяют кислород. Это заслуга ученого из Германии – Юлиуса Сакса.

Фотосинтез – интересное видео

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.


источники:

http://lektsii.org/15-16979.html

http://kipmu.ru/fotosintez/