Химическое уравнение можно составить для процесса ржавления железа

Железо. Свойства железа и его соединений

Железо Fe: химические свойства, способы получения железа, взаимодействие с простыми веществами (кислород, сера) и со сложными веществами (кислоты, вода, сильные окислители). Оксид железа (II) FeO, оксид железа (III) Fe2O3, железная окалина (Fe3O4) — способы получения и химические свойства. Гидроксид железа (II) Fe(OH)2, гидроксид железа (III) Fe(OH)3 — способы получения и химические свойства.

Железо

Положение в периодической системе химических элементов

Элемент железо расположен в побочной подгруппе VIII группы (или в 8 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение атома железа

Электронная конфигурация железа в основном состоянии :

+26Fe 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6

Железо проявляет ярко выраженные магнитные свойства.

Физические свойства

Железо – металл серебристо-белого цвета, с высокой химической активностью и высокой ковкостью. Обладает высокой тепло- и электропроводностью.

(изображение с портала vchemraznica.ru)

Температура плавления 1538 о С, температура кипения 2861 о С.

Нахождение в природе

Железо довольно распространено в земной коре (порядка 4% массы земной коры). По распространенности на Земле железо занимает 4-ое место среди всех элементов и 2-ое место среди металлов. Содержание в земной коре — около 8%.

В природе железо в основном встречается в виде соединений:

(изображение с портала karatto.ru)

Магнитный железняк Fe3O4 или FeO·Fe2O3 (магнетит).

(изображение с портала emchi-med.ru)

В природе также широко распространены сульфиды железа, например, пирит FeS2.

(изображение с портала livemaster.ru)

Встречаются и другие минералы, содержащие железо.

Способы получения

Железо в промышленности получают из железной руды, гематита Fe2O3 или магнетита (Fe3O4или FeO·Fe2O3).

1. Один из основных способов производства железа – доменный процесс . Доменный процесс основан на восстановлении железа из оксида углеродом в доменной печи.

В печь загружают руду, кокс и флюсы.

Шихта смесь исходных материалов, а в некоторых случаях и топлива в определённой пропорции, которую обрабатывают в печи.

Каменноугольный кокс это твёрдый пористый продукт серого цвета, получаемый путем коксования каменного угля при температурах 950—1100 °С без доступа воздуха. Содержит 96—98 % углерода.

Флюсы это неорганические вещества, которые добавляют к руде при выплавке металлов, чтобы снизить температуру плавления и легче отделить металл от пустой породы.

Шлак расплав (а после затвердевания стекловидная масса), покрывающий поверхность жидкого металла. Шлак состоит из всплывших продуктов пустой породы с флюсами и предохраняет металл от вредного воздействия газовой среды печи, удаляет примеси.

В печи кокс окисляется до оксида углерода (II):

2C + O2 → 2CO

Затем нагретый угарный газ восстанавливает оксид железа (III):

Процесс получения железа – многоэтапный и зависит от температуры.

Наверху, где температура обычно находится в диапазоне между 200 °C и 700 °C, протекает следующая реакция:

Ниже в печи, при температурах приблизительно 850 °C, протекает восстановление смешанного оксида железа (II, III) до оксида железа (II):

Встречные потоки газов разогревают шихту, и происходит разложение известняка:

Оксид железа (II) опускается в область с более высоких температур (до 1200 o C), где протекает следующая реакция:

FeO + CO → Fe + CO2

Углекислый газ поднимается вверх и реагирует с коксом, образуя угарный газ:

CO2 + C → 2CO

(изображение с портала 900igr.net)

2. Также железо получают прямым восстановлением из оксида водородом:

При этом получается более чистое железо, т.к. получаемое железо не загрязнено серой и фосфором, которые являются примесями в каменном угле.

3. Еще один способ получения железа в промышленности – электролиз растворов солей железа.

Качественные реакции

Качественные реакции на ионы железа +2.

– взаимодействие солей железа (II) с щелочами . При этом образуется серо-зеленый студенистый осадок гидроксида железа (II).

Например , хлорид железа (II) реагирует с гидроксидом натрия:

2NaOH + FeCl2 → Fe(OH)2 + 2NaCl

Видеоопыт взаимодействия раствора сульфата железа (II) с раствором гидроксида натрия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Гидроксид железа (II) на воздухе буреет, так как окисляется до гидроксида железа (III):

– ионы железа +2 окрашивают раствор в светлый желто-зеленый цвет.

– взаимодействие с красной кровяной солью K3[Fe(CN)6] – также качественная реакция на ионы железа +2. При этом образуется синий осадок «турнбулева синь».

Видеоопыт взаимодействия раствора хлорида железа (II) с раствором гексацианоферрата (III) калия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Качественные реакции на ионы железа +3

– взаимодействие солей железа (III) с щелочами . При этом образуется бурый осадок гидроксида железа (III).

Например , хлорид железа (III) реагирует с гидроксидом натрия:

3NaOH + FeCl3 → Fe(OH)3 + 3NaCl

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гидроксида натрия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

– ионы железа +3 окрашивают раствор в светлый желто-оранжевый цвет.

– взаимодействие с желтой кровяной солью K4[Fe(CN)6] ионы железа +3. При этом образуется синий осадок «берлинская лазурь».

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гексацианоферрата (II) калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

В последнее время получены данные, которые свидетельствуют, что молекулы берлинской лазури идентичны по строению молекулам турнбулевой сини. Состав молекул обоих этих веществ можно выразить формулой Fe4[Fe2(CN)6]3.

– при взаимодействии солей железа (III) с роданидами раствор окрашивается в кроваво-красный цвет.

Например , хлорид железа (III) взаимодействует с роданидом натрия:

FeCl3 + 3NaCNS → Fe(CNS)3 + 3NaCl

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором роданида калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

Химические свойства

1. При обычных условиях железо малоактивно , но при нагревании, в особенности в мелкораздробленном состоянии, оно становится активным и реагирует почти со всеми неметаллами .

1.1. Железо реагирует с галогенами с образованием галогенидов. При этом активные неметаллы (фтор, хлор и бром) окисляют железо до степени окисления +3:

2Fe + 3Cl2 → 2FeCl3

Менее активный йод окисляет железо до степени окисления +2:

1.2. Железо реагирует с серой с образованием сульфида железа (II):

Fe + S → FeS

1.3. Железо реагирует с фосфором . При этом образуется бинарное соединения – фосфид железа:

Fe + P → FeP

1.4. С азотом железо реагирует в специфических условиях.

1.5. Железо реагирует с углеродом и кремнием с образованием карбида и силицида.

1.6. При взаимодействии с кислородом железо образует окалину – двойной оксид железа (II, III):

При пропускании кислорода через расплавленное железо возможно образование оксида железа (II):

2Fe + O2 → 2FeO

2. Железо взаимодействует со сложными веществами.

2.1. При обычных условиях железо с водой практически не реагирует. Раскаленное железо может вступать в реакцию при температуре 700-900 о С с водяным паром:

3 Fe 0 + 4 H2 + O → Fe +3 3O4 + 4 H2 0

В воде в присутствии кислорода или во влажном воздухе железо медленно окисляется (корродирует):

2.2. Железо взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль железа со степенью окисления +2 и водород.

Например , железо бурно реагирует с соляной кислотой :

Fe + 2HCl → FeCl2 + H2

2.3. При обычных условиях железо не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат железа (III) и вода:

2.4. Железо не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации. При нагревании реакция идет с образованием нитрата железа (III), оксида азота (IV) и воды:

С разбавленной азотной кислотой железо реагирует с образованием оксида азота (II):

При взаимодействии железа с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Железо может реагировать с щелочными растворами или расплавами сильных окислителей . При этом железо окисляет до степени окисления +6, образуя соль (феррат).

Например , при взаимодействии железа с расплавом нитрата калия в присутствии гидроксида калия железо окисляется до феррата калия, а азот восстанавливается либо до нитрита калия, либо до аммиака:

2.6. Железо восстанавливает менее активные металлы из оксидов и солей .

Например , железо вытесняет медь из сульфата меди (II). Реакция экзотермическая:

Fe + CuSO4 → FeSO4 + Cu

Еще пример : простое вещество железо восстанавливает железо до степени окисления +2 при взаимодействии с соединениями железа +3:

2FeCl3 + Fe → 3FeCl2

Оксид железа (II)

Оксид железа (II) – это твердое, нерастворимое в воде вещество черного цвета.

Способы получения

Оксид железа (II) можно получить различными методами :

1. Частичным в осстановлением оксида железа (III).

Например , частичным восстановлением оксида железа (III) водородом:

Или частичным восстановлением оксида железа (III) угарным газом:

Еще один пример : восстановление оксида железа (III) железом:

2. Разложение гидроксида железа (II) при нагревании :

Химические свойства

Оксид железа (II) — типичный основный оксид .

1. При взаимодействии оксида железа (II) с кислотными оксидами образуются соли.

Например , оксид железа (II) взаимодействует с оксидом серы (VI):

FeO + SO3 → FeSO4

2. Оксид железа (II) взаимодействует с растворимыми кислотами. При этом также образуются соответствующие соли .

Например , оксид железа (II) взаимодействует с соляной кислотой:

FeO + 2HCl → FeCl2 + H2O

3. Оксид железа (II) не взаимодействует с водой.

4. Оксид железа (II) малоустойчив, и легко окисляется до соединений железа (III).

Например , при взаимодействии с концентрированной азотной кислотой образуются нитрат железа (III), оксид азота (IV) и вода:

При взаимодействии с разбавленной азотной кислотой образуется оксид азота (II). Реакция идет при нагревании:

5. Оксид железа (II) проявляет слабые окислительные свойства .

Например , оксид железа (II) реагирует с угарным газом при нагревании:

FeO + CO → Fe + CO2

Оксид железа (III)

Оксид железа (III) – это твердое, нерастворимое в воде вещество красно-коричневого цвета.

Способы получения

Оксид железа (III) можно получить различными методами :

1. Окисление оксида железа (II) кислородом.

2. Разложение гидроксида железа (III) при нагревании :

Химические свойства

Оксид железа (III) – амфотерный .

1. При взаимодействии оксида железа (III) с кислотными оксидами и кислотами образуются соли.

Например , оксид железа (III) взаимодействует с азотной кислотой:

2. Оксид железа (III) взаимодействует с щелочами и основными оксидами. Реакция протекает в расплаве, при этом образуется соответствующая соль (феррит) .

Например , оксид железа (III) взаимодействует с гидроксидом натрия:

3. Оксид железа (III) не взаимодействует с водой.

4. Оксид железа (III) окисляется сильными окислителями до соединений железа (VI).

Например , хлорат калия в щелочной среде окисляет оксид железа (III) до феррата:

Нитраты и нитриты в щелочной среде также окисляют оксид железа (III):

5. Оксид железа (III) проявляет окислительные свойства .

Например , оксид железа (III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II) или железной окалины:

Также оксид железа (III) восстанавливается водородом:

Железом можно восстановить оксид железа только до оксида железа (II):

Оксид железа (III) реагирует с более активными металлами .

Например , с алюминием (алюмотермия):

Оксид железа (III) реагирует также с некоторыми другими сильными восстановителями.

Например , с гидридом натрия:

Fe2O3 + 3NaH → 3NaOH + 2Fe

6. Оксид железа (III) – твердый, нелетучий и амфотерный. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната натрия:

Оксид железа (II, III)

Оксид железа (II, III) (железная окалина, магнетит) – это твердое, нерастворимое в воде вещество черного цвета.

Фото с сайта wikipedia.ru

Способы получения

Оксид железа (II, III) можно получить различными методами :

1. Горение железа на воздухе:

2. Частичное восстановление оксида железа (III) водородом или угарным газом :

3. При высокой температуре раскаленное железо реагирует с водой, образуя двойной оксид железа (II, III):

Химические свойства

Свойства оксида железа (II, III) определяются свойствами двух оксидов, из которых он состоит: основного оксида железа (II) и амфотерного оксида железа (III).

1. При взаимодействии оксида железа (II, III) с кислотными оксидами и кислотами образуются соли железа (II) и железа (III).

Например , оксид железа (II, III) взаимодействует с соляной кислотой. При это образуются две соли – хлорид железа (II) и хлорид железа (III):

Еще пример : оксид железа (II, III) взаимодействует с разбавленной серной кислотой.

2. Оксид железа (II, III) взаимодействует с сильными кислотами-окислителями (серной-концентрированной и азотной).

Например , железная окалина окисляется концентрированной азотной кислотой:

Разбавленной азотной кислотой окалина окисляется при нагревании:

Также оксид железа (II, III) окисляется концентрированной серной кислотой:

Также окалина окисляется кислородом воздуха :

3. Оксид железа (II, III) не взаимодействует с водой.

4. Оксид железа (II, III) окисляется сильными окислителями до соединений железа (VI), как и прочие оксиды железа (см. выше).

5. Железная окалина проявляет окислительные свойства .

Например , оксид железа (II, III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II):

Также железная окалина восстанавливается водородом:

Оксид железа (II, III) реагирует с более активными металлами .

Например , с алюминием (алюмотермия):

Оксид железа (II, III) реагирует также с некоторыми другими сильными восстановителями (йодидами и сульфидами).

Например , с йодоводородом:

Гидроксид железа (II)

Способы получения

1. Гидроксид железа (II) можно получить действием раствора аммиака на соли железа (II).

Например , хлорид железа (II) реагирует с водным раствором аммиака с образованием гидроксида железа (II) и хлорида аммония:

2. Гидроксид железа (II) можно получить действием щелочи на соли железа (II).

Например , хлорид железа (II) реагирует с гидроксидом калия с образованием гидроксида железа (II) и хлорида калия:

FeCl2 + 2KOH → Fe(OH)2↓ + 2KCl

Химические свойства

1. Гидроксид железа (II) проявляется основные свойства , а именно реагирует с кислотами . При этом образуются соответствующие соли.

Например , гидроксид железа (II) взаимодействует с соляной кислотой с образованием хлорида железа (II):

2. Гидроксид железа (II) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид железа (II) взаимодействует с оксидом серы (VI) с образованием сульфата железа (II):

3. Гидроксид железа (II) проявляет сильные восстановительные свойства , и реагирует с окислителями. При этом образуются соединения железа (III) .

Например , гидроксид железа (II) взаимодействует с кислородом в присутствии воды:

Гидроксид железа (II) взаимодействует с пероксидом водорода:

При растворении Fe(OH)2 в азотной или концентрированной серной кислотах образуются соли железа (III):

4. Г идроксид железа (II) разлагается при нагревании :

Гидроксид железа (III)

Способы получения

1. Гидроксид железа (III) можно получить действием раствора аммиака на соли железа (III).

Например , хлорид железа (III) реагирует с водным раствором аммиака с образованием гидроксида железа (III) и хлорида аммония:

2. Окислением гидроксида железа (II) кислородом или пероксидом водорода:

3. Гидроксид железа (III) можно получить действием щелочи на раствор соли железа (III).

Например , хлорид железа (III) реагирует с раствором гидроксида калия с образованием гидроксида железа (III) и хлорида калия:

FeCl3 + 3KOH → Fe(OH)3↓ + 3KCl

Видеоопыт получения гидроксида железа (III) взаимодействием хлорида железа (III) и гидроксида калия можно посмотреть здесь.

4. Также гидроксид железа (III) образуется при взаимодействии растворимых солей железа (III) с растворами карбонатов и сульфитов . Карбонаты и сульфиты железа (III) необратимо гидролизуются в водном растворе.

Например: бромид железа (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида железа (III), выделяется углекислый газ и образуется бромид натрия:

Но есть исключение ! Взаимодействие солей железа (III) с сульфитами в ЕГЭ по химии — окислительно-восстановительная реакция. Соединения железа (III) окисляют сульфиты, а также сульфиды и иодиды.

Взаимодействие хлорида железа (III) с сульфитом, например, калия — очень интересная реакция. Во-первых, в некоторых источниках указывается, что в ней таки может протекать необратимый гидролиз. Но для ЕГЭ лучше считать, что при этом протекает ОВР. Во-вторых, ОВР можно записать в разных видах:

Также допустима такая запись:

Химические свойства

1. Гидроксид железа (III) проявляет слабовыраженные амфотерные свойства, с преобладанием основных. Как основание, гидроксид железа (III) реагирует с растворимыми кислотами .

Например , гидроксид железа (III) взаимодействует с азотной кислотой с образованием нитрата железа (III):

2. Гидроксид железа (III) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид железа (III) взаимодействует с оксидом серы (VI) с образованием сульфата железа (III):

3. Гидроксид железа (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиферриты, а в растворе реакция практически не идет. При этом гидроксид железа (III) проявляет кислотные свойства.

Например , гидроксид железа (III) взаимодействует с гидроксидом калия в расплаве с образованием феррита калия и воды:

4. Г идроксид железа (III) разлагается при нагревании :

Видеоопыт взаимодействия гидроксида железа (III) с соляной кислотой можно посмотреть здесь.

Соли железа

Нитраты железа

Нитрат железа (II) при нагревании разлагается на оксид железа (III), оксид азота (IV) и кислород:

Нитрат железа (III) при нагревании разлагается также на оксид железа (III), оксид азота (IV) и кислород:

Гидролиз солей железа

Растворимые соли железа, образованные кислотными остатками сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. частично:

I ступень: Fe 3+ + H2O ↔ FeOH 2+ + H +

II ступень: FeOH 2+ + H2O ↔ Fe(OH )2 + + H +

Однако сульфиты и карбонаты железа (III) и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

При взаимодействии соединений железа (III) с сульфидами протекает ОВР:

2FeCl3 + 3Na2S → 2FeS + S + 6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

Окислительные свойства железа (III)

Соли железа (III) под проявляют довольно сильные окислительные свойств. Так, при взаимодействии соединений железа (III) с сульфидами протекает окислительно-восстановительная реакция.

Например : хлорид железа (III) взаимодействует с сульфидом натрия. При этом образуется сера, хлорид натрия и либо черный осадок сульфида железа (II) (в избытке сульфида натрия), либо хлорид железа (II) (в избытке хлорида железа (III)):

2FeCl3 + 3Na2S → 2FeS + S + 6NaCl

2FeCl3 + Na2S → 2FeCl2 + S + 2NaCl

По такому же принципу соли железа (III) реагируют с сероводородом:

2FeCl3 + H2S → 2FeCl2 + S + 2HCl

Соли железа (III) также вступают в окислительно-восстановительные реакции с йодидами .

Например , хлорид железа (III) взаимодействует с йодидом калия. При этом образуются хлорид железа (II), молекулярный йод и хлорид калия:

2FeCl3 + 2KI → 2FeCl2 + I2 + 2KCl

Интерес представляют также реакции солей железа (III) с металлами. Мы знаем, что более активные металлы вытесняют из солей менее активные металлы . Иначе говоря, металлы, которые стоят в электрохимическом ряду левее, могут взаимодействовать с солями металлов, которые расположены в этом ряду правее . Исходя из этого правила, соли железа могут взаимодействовать только с металлами, которые расположены до железа. И они взаимодействуют.

Однако, соли железа со степенью окисления +3 в этом ряду являются небольшим исключением. Ведь для железа характерны две степени окисления: +2 и +3. И железо со степенью окисления +3 является более сильным окислителем. Таким образом, условно говоря, железо со степенью окисления +3 расположено в ряду активности после меди. И соли железа (III) могут реагировать еще и с металлами, которые расположены правее железа! Но до меди, включительно. Вот такой парадокс.

И еще один момент. Соединения железа (III) с этими металлами реагировать будут, а вот соединения железа (II) с ними реагировать не будут. Таким образом, металлы, расположенные в ряду активности между железом и медью (включая медь) при взаимодействии с солями железа (III) восстанавливают железо до степени окисления +2. А вот металлы, расположенные до железа в ряду активности, могут восстановить железо и до простого вещества.

Например , хлорид железа (III) взаимодействует с медью. При этом образуются хлорид железа (II) и хлорид меди (II):

А вот реакция нитрата железа (III) с цинком протекает уже по привычному механизму. И железо восстанавливается до простого вещества:

Химическое уравнение можно составить для процесса ржавления железа

Гипермаркет знаний>>Химия>>Химия 7 класс>> Феррум. Железо. Экспериментируем дома. Ржавление железа. Для любознательных. О чугуне и стали

В этом параграфе речь идет:

> о химическом элементе Ферруме и его распространенности в природе;
> о железе и его свойствах;
> о защите железа от коррозии;
> о применении железа.

Это один из важнейших металлических элементов. Его простое вещество — металл железо — человек использует уже несколько тысячелетий. Без железа и его сплавов нельзя представить современную жизнь. Соединения Феррума играют особую роль в живой природе.

► Охарактеризуйте положение Феррума в периодической системе, укажите относительную атомную массу элемента, порядковый номер, заряд ядра атома и количество электронов в атоме.

Атом Феррума может потерять 2 электрона и превратиться в ион Fe 2+ . Возможна потеря атомом еще и третьего электрона. В этом случае образуется ион Fe 3+ . Ионы Fe2+ содержатся в соединениях Феррума(II), a Fe 3+ — в соединениях Феррума(III).

► Составьте формулы соответствующих оксидов Феррума.

Распространенность Феррума в природе.

По распространенности в земной коре Ферум разделяет с Кальцием 6—7-е места (в каждой тысяче атомов содержится по 18 атомов этих элементов).

Известно много природных соединений Феррума. Соединения Феррума с Оксигеном — красный, магнитный и бурый железняки — являются сырьем для получения железа; это железные руды. Свыше 14 % их разведанных запасов находится в Украине. Криворожское месторождение — одно из крупнейших в мире.

По утверждениям ученых, железо вместе с никелем образуют ядро нашей планеты.

В организме взрослого человека содержится 3—5 г Феррума.

Кроме соединений Феррума, в природе иногда встречается метеоритное железо.

Небольшое количество Феррума содержится в природной воде (в виде ионов Fe2+). При ее кипячении на стенках сосуда образуется накипь, которая имеет желтоватый оттенок из-за примеси соединений Феррума.

В живых существах Феррума очень мало. Ионы Fe 2+ входят в состав гемоглобина крови. Это соединение «переносит» кислород от легких к живым тканям, а часть углекислого газа — от тканей к легким. Благодаря наличию Феррума гемоглобин, а следовательно, и кровь, имеют красный цвет. Недостаточное количество этого элемента в организме служит причиной малокровия. Поэтому рекомендуют чаще употреблять в пищу богатые на Феррум гречку, яблоки, свеклу, зеленые овощи.

Феррум образует простое вещество — железо. Из этого металла изготавливали орудия труда и оружие за тысячи лет до нашей эры. Тогда человек использовал метеоритное железо, а позднее научился получать металл из руды.

Физические свойства железа.

Железо — серовато-серебристый пластичный металл, который плавится при температуре 1539 °С, притягивается магнитом. Образует много сплавов с различными металлами.

Лабораторный опыт № 10

Изучение физических свойств железа

Рассмотрите выданные вам железные предметы — гвозди, скрепки или кнопки. Опишите внешний вид металла.

Поместите железный предмет в стакан с водой. Железо тяжелее или легче воды? Растворяется ли этот металл в воде?

Выясните, притягивается ли железо магнитом.

Закрепите железный предмет в щипцах или пробиркодержателе и нагревайте в пламени спиртовки (сухого горючего). Удается ли расплавить железо в таких условиях?

Запишите результаты экспериментов.

Железо проявляет в химических реакциях достаточную активность, но она меняется в зависимости от размера частиц и наличия примесей. Так, в очень измельченном состоянии этот металл самовозгорается на воздухе. Довольно чистое железо (например, метеоритное) не ржавеет.

В отличие от кислорода, который реагирует почти со всеми простыми веществами, железо взаимодействует только с неметаллами1.

Реакции с неметаллами.

При сильном нагревании на воздухе железо раскаляется и медленно окисляется, а в чистом кислороде горит. Очень эффектным является опыт по сжиганию лезвия или стальной пружинки (рис. 67). На пружинке закрепляют спичку (напротив ее головки) и зажимают ее в лабораторых щипцах. Спичку, опущенную головкой вниз, поджигают. Когда пламя достигнет пружинки, ее сразу переносят в стакан с кислородом. Дно сосуда заранее засыпают слоем песка, чтобы на стекло не попали капли расплавленного металла.

Пружинка сгорает в кислороде, разбрасывая искры во все стороны (это напоминает сварку металла):
t
3Fe + 202 = Fe3O4.


Рис. 67. Горение стальной пружинки в кислороде

Формулу продукта реакции можно записать и так: FeO • Fe2O3. Эта запись свидетельствует о том, что вещество является соединением двух оксидов Феррума, а не их смесью. Химическое название соединения — феррум(II, III) оксид, а тривиальное — железная окалина. Железо сгорает и в газе хлоре (рис. 68):

1 Реакции между металлами не происходят.


Рис. 68. Горение железа в хлоре

Если нагреть смесь порошков железа и серы, то при определенной температуре начинается реакция, которая происходит с выделением значительного количества теплоты. Продуктом реакции является соединение Феррума(II):

t
Fe + S = FeS.
феррум(II) сульфид

Реакция с водой. Железо при высокой температуре может взаимодействовать с водой (раскаленный металл реагирует с водяным паром):
t
3Fe + 4Н20 = Fe3O4 + 4Н2.

Раньше с помощью этой реакции получали в промышленности водород.

Ржавление (коррозия) железа.

С водой железо реагирует и в обычных условиях, но очень медленно и с участием кислорода. В результате на поверхности металла образуется коричневый или желтобурый налет — ржавчина. Разрушение железа под
действием воды и кислорода называют ржавлением, или коррозией.

Использовав для ржавчины формулу Fe(OH)3, запишем уравнение реакции:

Ежегодно из-за коррозии теряется примерно 1/5 всего произведенного металла (рис. 69, а). Для предотвращения разрушения железа его смазывают специальными смазочными маслами, покрывают красками, лаками, керамическими эмалями, слоем другого металла, устойчивого к коррозии, — никеля, хрома, цинка (рис. 69, б).


Рис. 69. Коррозия железа: а — бочка, которую «съела» ржавчина; б — ржавая проволока, на которой закреплена оцинкованная железная сетка

Полностью исключает коррозию замена железа нержавеющей сталью — сплавом железа с хромом и никелем.

Наверное, нет такой отрасли производства или потребления, где бы не использовались чугун и сталь — важнейшие сплавы на основе железа. Из чугуна отливают металлические изделия различного назначения, а из Схема 10. стали изготовляют арматуру, рельсы, трубы, инструменты, транспорт, оружие, военную технику, промышленное оборудование и т. п. (схема 10).

Схема 10. Применение железа

Феррум — металлический элемент; его простое вещество — металл железо.

Кроме атомов Феррума, существуют ионы Fe2+ и Fe3+, которые входят в состав соединений Феррума(II) и Феррума(III).

Феррум широко распространен в литосфере. Природные соединения этого элемента с Оксигеном являются железными рудами.

Железо — тугоплавкий металл, который притягивается магнитом, вступает в реакции с активными неметаллами, реагирует с водой, в частности при наличии кислорода.

Химическое превращение железа при участии кислорода и воды называют ржавлением, или коррозией.

Для предотвращения коррозии изделия из железа покрывают красками, лаками, смазочными маслами или слоем другого металла. Часто вместо железа используют нержавеющую сталь — сплав железа с хромом и никелем.

Сплавы на основе железа, прежде всего чугун и сталь, широко используют в промышленности, технике, других отраслях.

?
158. Подготовьте небольшой доклад на одну из таких тем: а) «Биологиче­ская роль Феррума»; б) «Элемент Феррум на планете Земля»; в) «Важ­нейшие сплавы железа».

159. Сколько электронов содержат ионы Fe 2+ и Fe 3+ ?

160. Напишите формулы соединений Феррума с Флуором, которые содер­жат ионы Fe 2+ и Fe 3+ .

161. Вычислите массовые доли Феррума в соединениях: a) FeO; б) Fe2O3; в) Fe3O4.
162. Превратите схемы реакций в химические уравнения:
t t
FeO + O2 —> Fe2O3; Fe2O3 + Fe —> Fe3O4.

163. Замените названия веществ химическими формулами и превратите схемы реакций в химические уравнения:
t
а) феррум(II) оксид + кислород —> феррум(II, III) оксид;

t
б) феррум(II, III) оксид + железо —> феррум(II) оксид.

164. Какая масса железа прореагировала с 8 г серы, если образовалось 22 г соединения FeS?

165. В сплаве железа с марганцем массовая доля марганца равна 10 %, а примесей — 2%. Вычислите массу железа, которая содержится в 20 г сплава.

166. При нагревании 11,2 г железа с 6,4 г серы образовалось 13,2 г феррум(II) сульфида. Какой вывод можно сделать на основании результа­тов эксперимента?

167. в нержавеющей стали на каждые 10 атомов Феррума приходится 3 атома Хрома и I атом Никеля. Вычислите массовые доли металлов в этой стали.

Докажем, что ржавление железа происходит при одновременном участии воды (водяного пара) и кислорода, а также ускоряется в растворе поваренной соли.

Для опыта возьмите пять одинаковых чистых гвоздей длиной 2— 3 см, кнопок или скрепок и четыре аптечные бутылочки емкостью 100 мл с пробками.

В первую бутылочку налейте водопроводной воды до половины объема, в другую — столько же свежепрокипяченной и охлажденной воды, в третью — такой же объем раствора поваренной соли в водопроводной воде, а в четвертую — воды слоем в 2— 3 мм.

В первые три бутылочки с жидкостью погрузите по одному железному предмету, а в четвертой подвесьте предмет на нитке, чтобы он не касался воды. Все бутылочки закройте пробками. Пятый предмет положите возле бутылочек на чистый лист бумаги.

Дважды в день рассматривайте железные предметы. Какой из них начинает ржаветь первым, а какой — последним? На всех ли предметах появляется ржавчина?

Объясните результаты эксперимента и сделайте выводы. Примите во внимание, что из воды во время кипения выделяется растворен­ный воздух, а над водой всегда существует водяной пар.

О чугуне и стали

И чугун, и сталь можно упрощенно считать железом, содержащим примеси. Оба вещества различаются прежде всего внешним видом (сравните чугунную сковороду со стальной). Чугун — сероватый, со слабым металлическим блеском, а сталь — светлая и блестящая.

Примесей в чугуне больше, чем в обычной стали. Они придают чугуну твердость, хрупкость. А сталь нехрупкая и поддается механической обработке.

Чугун получают из железной руды с помощью химических реакций, а сталь — переплавкой чугуна в определенных условиях (рис. 70). Отрасль промышленности по производству чугуна и стали называют черной металлургией. По объему ее продукции Украина занимает одно из ведущих мест в мире.


Рис. 70. Разливка стали

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. — К.: ВЦ «Академія», 2008. — 136 с.: іл.

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Ржавчина

Ржавчина — является общим термином для определения оксидов железа. В разговорной речи это слово применяется к красным оксидам, образующимся в ходе реакции железа с кислородом в присутствии воды или влажного воздуха. Есть и другие формы ржавчины, например, продукт, образующийся в ходе реакции железа с хлором при отсутствии кислорода. Такое вещество образуется, в частности, в арматуре, используемой в подводных бетонных столбах, и называют его зелёной ржавчиной. Несколько видов коррозии различимы зрительно или с помощью спектроскопии, они образуются при разных внешних условиях. Ржавчина состоит из гидратированного оксида железа (III) Fe2O3·nH2O и метагидроксида железа (FeO(OH), Fe(OH)3). При наличии кислорода, воды и достаточного времени любая масса железа в конечном итоге преобразуется полностью в ржавчину и разрушается. Поверхность ржавчины не создаёт защиту для нижележащего железа, в отличие от образования патины на медной поверхности.

Ржавчиной, как правило, называют продукт коррозии только железа и его сплавов, таких как сталь. Многие другие металлы тоже подвергаются коррозии, но именно оксиды железа обычно называют ржавчиной.

Содержание

  • 1 Химические реакции
    • 1.1 Причины ржавления
    • 1.2 Происходящие реакции
  • 2 Предотвращение ржавления
    • 2.1 Гальванизация
    • 2.2 Катодная защита
    • 2.3 Лакокрасочные и другие защитные покрытия
    • 2.4 Покрытие слоем металла
    • 2.5 Воронение
    • 2.6 Снижение влажности
    • 2.7 Ингибиторы
  • 3 Экономический эффект

Химические реакции

Причины ржавления

Если железо, содержащее какие-либо добавки и примеси (например, углерод), находится в контакте с водой, кислородом или другим сильным окислителем и/или кислотой, то оно начинает ржаветь. Если при этом присутствует соль, например, имеется контакт с солёной водой, коррозия происходит быстрее в результате электрохимических реакций. Чистое железо относительно устойчиво к воздействию чистой воды и сухого кислорода. Как и у других металлов, например, у алюминия, плотно приставшее оксидное покрытие на железе (слой пассивации) защищает основную массу железа от дальнейшего окисления. Превращение же пассивирующего слоя оксида железа в ржавчину является результатом комбинированного действия двух реагентов, как правило, кислорода и воды. Другими разрушающими факторами являются диоксид серы и углекислый газ в воде. В этих агрессивных условиях образуются различные виды гидроксида железа. В отличие от оксидов железа, гидроксиды не защищают основную массу металла. Поскольку гидроксид формируется и отслаивается от поверхности, воздействию подвергается следующий слой железа, и процесс коррозии продолжается до тех пор, пока всё железо не будет уничтожено, или в системе закончится весь кислород, вода, диоксид углерода или диоксид серы.

Происходящие реакции

Ржавление железа — это электрохимический процесс, который начинается с переноса электронов от железа к кислороду. Скорость коррозии зависит от количества имеющейся воды, и ускоряется электролитами, о чём свидетельствуют последствия применения дорожной соли на коррозию автомобилей. Ключевой реакцией является восстановление кислорода:

Поскольку при этом образуются гидроксид-анионы, этот процесс сильно зависит от присутствия кислоты. Действительно, коррозия большинства металлов кислородом ускоряется при понижении pH. Обеспечение электронов для вышеприведённой реакции происходит при окисления железа, которое может быть описано следующим образом:

Следующая окислительно-восстановительная реакция происходит в присутствии воды и имеет решающее значение для формирования ржавчины:

4 Fe 2+ + O2 → 4 Fe 3+ + 2 O 2−

Кроме того, следующие многоступенчатые кислотно-щелочные реакции влияют на ход формирования ржавчины:

Fe 2+ + 2 H2O ⇌ Fe(OH)2 + 2 H + Fe 3+ + 3 H2O ⇌ Fe(OH)3 + 3 H +

что приводит к следующим реакциям поддержания баланса дегидратации:

Из приведённых выше уравнений видно, что формирование продуктов коррозии обусловлено наличием воды и кислорода. С ограничением растворённого кислорода на передний план выдвигаются железо (II)-содержащие материалы, в том числе FeO и чёрный магнит (Fe3O4). Высокая концентрация кислорода благоприятна для материалов с трёхвалентным железом, с номинальной формулой Fe(OH)3-xOx/2. Характер коррозии меняется со временем, отражая медленные скорости реакций твёрдых тел.

Кроме того, эти сложные процессы зависят от присутствия других ионов, таких как Ca 2+ , которые служат в качестве электролита, и таким образом, ускоряют образование ржавчины, или в сочетании с гидроксидами и оксидами железа образуют различные осадки вида Ca-Fe-O-OH.

Более того, цвет ржавчины можно использовать для проверки наличия ионов Fe2+, которые меняют цвет ржавчины с жёлтого на синий.

Предотвращение ржавления

Ржавчина является проницаемой для воздуха и воды, поэтому внутрилежащее железо продолжает разъедаться. Предотвращение ржавчины, следовательно, требует покрытия, которое исключает образование ржавчины. На поверхности нержавеющей стали образуется пассивирующий слой оксида хрома (III). Подобное проявление пассивации происходит с магнием, титаном, цинком, оксидом цинка, алюминием, полианилином и другими электропроводящими полимерами.

Гальванизация

Хорошим подходом к предотвращению ржавчины является метод гальванизации, который обычно заключается в нанесении на защищаемый объект слоя цинка либо методом горячего цинкования, либо методом гальванотехники. Цинк традиционно используется, потому что он достаточно дёшев, обладает хорошей адгезией к стали и обеспечивает катодную защиту на стальную поверхность в случае повреждения цинкового слоя. В более агрессивных средах (таких, как солёная вода), предпочтительнее кадмий. Гальванизация часто не попадает на швы, отверстия и стыки, через которые наносилось покрытие. В этих случаях покрытие обеспечивает катодную защиту металла, где оно выступает в роли гальванического анода, на который прежде всего и воздействует коррозия. В более современные покрытия добавляют алюминий, новый материал называется цинк-алюм. Алюминий в покрытии мигрирует, покрывая царапины и, таким образом, обеспечивая более длительную защиту. Этот метод основан на применении оксидов алюминия и цинка, защищающих царапины на поверхности, в отличие от процесса оксидизации, как в случае применения гальванического анода. В некоторых случаях при очень агрессивных средах или длительных сроках эксплуатации применяются одновременно и гальванизация цинком, и другие защитные покрытия, чтобы обеспечить надёжную защиту от коррозии.

Катодная защита

Катодная защита является методом, используемым для предотвращения коррозии в скрытых под землёй или под водой структурах путём подачи электрического заряда, который подавляет электрохимические реакции. Если её правильно применять, коррозия может быть остановлена полностью. В своей простейшей форме это достигается путём соединения защищаемого объекта с протекторным анодом, в результате чего на поверхности железа или стали происходит только катодный процесс. Протекторный анод должен быть сделан из металла с более отрицательным электродным потенциалом, чем железо или сталь, обычно это цинк, алюминий или магний.

Лакокрасочные и другие защитные покрытия

От ржавчины можно предохранять с помощью лакокрасочных и других защитных покрытий, которые изолируют железо из окружающей среды. Большие поверхности, поделённые на секции, как например, корпуса судов и современных автомобилей, часто покрывают продуктами на основе воска. Такие средства обработки содержат также ингибиторы коррозии. Покрытие стальной арматуры бетоном (железобетон) обеспечивает некоторую защиту стали в среде с высоким pH. Однако коррозия стали в бетоне всё ещё является проблемой.

Покрытие слоем металла

  • Оцинковка (оцинкованное железо/сталь): железо или сталь покрываются слоем цинка. Может использоваться метод горячего цинкования или метод цинкового дутья.
  • Лужение: мягкая листовая сталь покрывается слоем олова. В настоящее время практически не используется из-за высокой стоимости олова.
  • Хромирование: тонкий слой хрома наносится электролитическим способом на сталь, обеспечивая как защиту от коррозии, так и яркий, полированный внешний вид. Часто используется в блестящих компонентах велосипедов, мотоциклов и автомобилей.

Воронение

Воронение — это способ, который может обеспечить ограниченную устойчивость к коррозии для мелких предметов из стали, таких как огнестрельное оружие и др. Способ состоит в получении на поверхности углеродистой или низколегированной стали или чугуна слоя окислов железа толщиной 1-10 мкм. Для придания блеска, а также для улучшения защитных свойств окисной плёнки, её пропитывают минеральным или растительным маслом.

Снижение влажности

Ржавчины можно избежать, снижая влажность окружающего железо воздуха. Этого можно добиться, например, с помощью силикагеля.

Ингибиторы

Ингибиторы коррозии, как, например, газообразные или летучие ингибиторы, можно использовать для предотвращения коррозии в закрытых системах. Некоторые ингибиторы коррозии чрезвычайно ядовиты. Одним из лучших ингибиторов выступают соли технециевой кислоты.

Экономический эффект

Ржавчина вызывает деградацию изделий и конструкций, изготовленных из материалов на основе железа. Поскольку ржавчина имеет гораздо больший объём, чем исходное железо, её нарост ведёт к быстрому разрушению конструкции, усиливая коррозию на прилегающих к нему участках — явление, называемое поеданием ржавчиной. Это явление стало причиной разрушения моста через реку Мианус (штат Коннектикут, США) в 1983 году, когда подшипники подъёмного механизма полностью проржавели изнутри. В результате этот механизм зацепил за угол одной из дорожных плит и сдвинул её с опор. Ржавчина была также главной причиной разрушения Серебряного моста в Западной Вирджинии в 1967 году, когда стальной висячий мост рухнул меньше, чем за минуту. Погибли 46 водителей и пассажиров, находившихся в то время на мосту.

Мост Кинзу в штате Пенсильвания был снесён смерчем в 2003 году в значительной степени потому, что центральные опорные болты, соединяющие сооружение с землёй, проржавели, из-за чего мост держался лишь под действием силы тяжести.

Кроме того, коррозия покрытых бетоном стали и железа может вызвать раскалывание бетона, что создает серьёзные конструкторские трудности. Это один из наиболее распространённых отказов железобетонных мостов.


источники:

http://edufuture.biz/index.php?title=%D0%A4%D0%B5%D1%80%D1%80%D1%83%D0%BC._%D0%96%D0%B5%D0%BB%D0%B5%D0%B7%D0%BE._%D0%AD%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82%D0%B8%D1%80%D1%83%D0%B5%D0%BC_%D0%B4%D0%BE%D0%BC%D0%B0._%D0%A0%D0%B6%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B6%D0%B5%D0%BB%D0%B5%D0%B7%D0%B0

http://chem.ru/rzhavchina.html