Хлорирование этана на свету уравнение

Этан: способы получения и свойства

Этан C2H6 – это предельный углеводород, содержащий два атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Гомологический ряд этана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение этана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле этана C2H6 атомы водорода располагаются в пространстве в вершинах двух тетраэдров, центрами которых являются атомы углерода

Изомерия этана

Для этана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства этана

Этан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для этана характерны радикальные реакции.

Этан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Этан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании этана сначала образуется хлорэтан:

Хлорэтан может взаимодействовать с хлором и дальше с образованием дихлорэтана, трихлорэтана, тетрахлорметана и т.д.

1.2. Нитрование этана

Этан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в этане замещается на нитрогруппу NO2.

Например. При нитровании этана образуется преимущественно нитроэтан:

2. Дегидрирование этана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании этана образуются этилен или ацетилен:

3. Окисление этана

Этан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Этан горит с образованием углекислого газа и воды. Реакция горения этана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении этана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение этана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения этана из хлорметана или бромметана. При этом происходит удвоение углеродного скелета.

Например , хлорметан реагирует с натрием с образованием этана:

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии пропионата натрия с гидроксидом натрия при сплавлении образуется этан и карбонат натрия:

CH3–CH2 –COONa + NaOH CH3–CH2 –H + Na2CO3

3. Гидрирование алкенов и алкинов

Этан можно получить из этилена или ацетилена:

При гидрировании этилена образуется этан:

При полном гидрировании ацетилена также образуется этан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить этан:

5. Получение этана в промышленности

В промышленности этан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

№13. Какие химические свойства свойственны предельным углеводородам? Напишите уравнения последовательного хлорирования этана.

1) При взаимодействии предельных углеводородов с галогенами при освещении происходит замещение атомов водорода на галоген:

2) Все предельные углеводороды горят, при горении образуются оксид углерода (IV) и вода:

3) Предельные углеводороды можно превратить в непредельные углеводороды путем отщепления молекулы водорода (реакция дегидрирования):

Решебник по химии за 10 класс (Г.Е.Рудзитис, Ф.Г.Фельдман, 2000 год),
задача №13
к главе «Глава II. Предельные углеводороды (алканы или парафины) (стр. 22). Вопросы».

§ 10. Химические свойства, получение и применение алканов

1. Напишите уравнение реакции монобромирования этана.

 C H 3 − C H 3 + B r 2 → h v C H 3 − C H 2 B r + H B r \mathrmCH_3<+>Br_2<\xrightarrow>CH_3<->CH_2Br<+>HBr> C H 3 ​ − C H 3 ​ + B r 2 ​ h v

​ C H 3 ​ − C H 2 ​ B r + H B r 

2. Напишите уравнения реакций, которые протекают при взаимодействии н-бутана с хлором. Считайте, что только один атом водорода в молекуле н-бутана замещается на хлор. Подпишите названия образующихся органических веществ.

3. Сколько хлорпроизводных можно получить в результате хлорирования этана? Напишите уравнения реакций получения всех возможных хлорпроизводных этана, назовите хлорпроизводные. Можно ли при записи уравнений реакций в данном случае использовать молекулярные формулы?

Можно получить 9 хлорпроизводных:

1)  C H 3 − C H 3 + C l 2 → h v C H 3 − C H 2 C l + H C l \mathrmCH_3<+>Cl_2<\xrightarrow>CH_3<->CH_2Cl<+>HCl> C H 3 ​ − C H 3 ​ + C l 2 ​ h v

​ C H 3 ​ − C H 2 ​ C l + H C l  (хлорэтан)

2)  C H 3 − C H 3 + 2 C l 2 → h v C H 3 − C H C l 2 + 2 H C l \mathrmCH_3<+>2Cl_2<\xrightarrow>CH_3<->CHCl_2<+>2HCl> C H 3 ​ − C H 3 ​ + 2 C l 2 ​ h v

​ C H 3 ​ − C H C l 2 ​ + 2 H C l  (1,1-дихлорэтан)

3)  C H 3 − C H 3 + 2 C l 2 → h v C H 2 C l − C H 2 C l + 2 H C l \mathrmCH_3<+>2Cl_2<\xrightarrow>CH_2Cl<->CH_2Cl<+>2HCl> C H 3 ​ − C H 3 ​ + 2 C l 2 ​ h v

​ C H 2 ​ C l − C H 2 ​ C l + 2 H C l  (1,2-дихлорэтан)

4)  C H 3 − C H 3 + 3 C l 2 → h v C H 3 − C C l 3 + 3 H C l \mathrmCH_3<+>3Cl_2<\xrightarrow>CH_3<->CCl_3<+>3HCl> C H 3 ​ − C H 3 ​ + 3 C l 2 ​ h v

​ C H 3 ​ − C C l 3 ​ + 3 H C l  (1,1,1-трихлорэтан)

5)  C H 3 − C H 3 + 3 C l 2 → h v C H C l 2 − C H 2 C l + 3 H C l \mathrmCH_3<+>3Cl_2<\xrightarrow>CHCl_2<->_2>Cl<+>3HCl> C H 3 ​ − C H 3 ​ + 3 C l 2 ​ h v

​ C H C l 2 ​ − C H 2 ​ C l + 3 H C l  (1,1,2-трихлорэтан)

6)  C H 3 − C H 3 + 4 C l 2 → h v C H 2 C l − C C l 3 + 4 H C l \mathrmCH_3<+>4Cl_2<\xrightarrow>_2>Cl<->CCl_3<+>4HCl> C H 3 ​ − C H 3 ​ + 4 C l 2 ​ h v

​ C H 2 ​ C l − C C l 3 ​ + 4 H C l  (1,1,1,2-тетрахлорэтан)

7)  C H 3 − C H 3 + 4 C l 2 → h v C H C l 2 − C H C l 2 + 4 H C l \mathrmCH_3<+>4Cl_2<\xrightarrow>CHCl_2<->CHCl_2<+>4HCl> C H 3 ​ − C H 3 ​ + 4 C l 2 ​ h v

​ C H C l 2 ​ − C H C l 2 ​ + 4 H C l  (1,1,2,2=тетрахлорэтан)

8)  C H 3 − C H 3 + 5 C l 2 → h v C H C l 2 − C C l 3 + 5 H C l \mathrmCH_3<+>5Cl_2<\xrightarrow>CHCl_2<->CCl_3<+>5HCl> C H 3 ​ − C H 3 ​ + 5 C l 2 ​ h v

​ C H C l 2 ​ − C C l 3 ​ + 5 H C l  (пентахлорэтан)

9)  C H 3 − C H 3 + 6 C l 2 → h v C C l 3 − C C l 3 + 6 H C l \mathrmCH_3<+>6Cl_2<\xrightarrow>CCl_3<->CCl_3<+>6HCl> C H 3 ​ − C H 3 ​ + 6 C l 2 ​ h v

​ C C l 3 ​ − C C l 3 ​ + 6 H C l  (гексахлорэтан)

При записи уравнений реакций 2-7 нельзя использовать молекулярные формулы.


источники:

http://5terka.com/node/4468

http://superresheba.by/resh/53931