I уроки по решению системы уравнений

Открытый урок по теме «Решение систем уравнений различными способами»

Разделы: Математика

Цели урока:

  1. Систематизация знаний, умений и навыков при решении систем уравнений различными способами.
  2. Развитие: вычислительных навыков устного и письменного счета, умений применять знания на практике в новых условиях, межпредметных связей с историей, астрономией и информатикой.
  3. Воспитание интереса к предмету, патриотизма, чувства прекрасного, гордости за свою страну, самостоятельности и умения работать в заданном темпе.
  4. Развитие слухового и слухо-зрительного восприятия. Формирование математически грамотной речи учащихся.

Тип урока: урок обобщения и систематизации знаний, умений и навыков.

Словарь: средневековый ученый, Николай Коперник, российский ученый, Константин Эдуардович Циолковский, Галактика, Солнце, способ подстановки, способ сложения, выразить одну переменную через другую.

Ход урока

I. Организационный момент.

  1. Организационный момент.
  2. Устная работа.
  3. Самостоятельная работа.
  4. Физминутка.
  5. Выполнение упражнений.
  6. Домашнее задание.
  7. Итог урока.

Сегодня у нас с вами необычный урок. Мы с вами очередной раз совершим виртуальное путешествие. Мы отправимся с вами в путешествие по необъятным просторам космического пространства. Как вы думаете, почему я выбрала такое путешествие? (потому что скоро 12 апреля – День космонавтики). Совершенно верно.

II. Устная работа.

Перед началом нашего путешествия необходимо размяться и ответить на несколько вопросов. (Приложение 1, Слайд 2)

  1. Какие способы решения систем уравнений вы знаете?
  2. Является ли пара чисел (2; — 1) решением системы уравнений?

  1. Выразите одну переменную через другую.
    1) х + у = 2;
    2) х – 2у = 4.

III. Самостоятельная работа.

Решить систему уравнений: (Приложение 1, Слайд 3)

IV. Физминутка.

Прежде чем вы приступите к работе надо выполнить физминутку.

V. Выполнение упражнений.

Итак, мы отправляемся.

Впервые человек начал задумываться о космосе очень давно. Еще в XV веке средневековый ученый Коперник обратил свой взор в небо. (Приложение 1, Слайд 4)

Российский ученый Циолковский мечтал о полетах людей в космос и даже придумывал эскизы ракет. (Приложение 1, Слайд 5)

Мечту Константина Эдуардовича Циолковского воплотил в реальность советский конструктор космических ракет Сергей Павлович Королев. (Приложение 1, Слайд 6)

А полетел в космос первый в мире советский космонавт Юрий Алексеевич Гагарин (Приложение 1, Слайд 7)

Вот и мы с вами совершим сегодня путешествие в практически неизведанные дали космического пространства.

Для того чтобы перемещаться по необъятным просторам космоса нам необходимо определять координаты нашего местонахождения.

В космосе есть своя определенная система координат, но сегодня мы воспользуемся координатами, полученными при решении систем уравнений двумя способами: способом подстановки и способом сложения.

Ну, что? Приступим к решению?

1. Решить систему уравнений способом подстановки: (Приложение 1, Слайд 8).

Выберите правильный ответ. (Приложение 1, Слайд 12).

Молодцы! Мы определили координаты расположения одной из многочисленных галактик. Это наша Галактика в которой мы живем. (Приложение 1, Слайд 15).

Кто прочитает, что это за галактика?

2. Решить систему уравнений способом сложения или вычитания: (Приложение 1, Слайд 9).

Выберите правильный ответ. (Приложение 1, Слайд 13).

Хорошо! А сейчас мимо нас пролетает комета с данными координатами (комета Галлея).

Прочитайте, что это за комета? (Приложение 1, Слайд 16).

3. Решить систему уравнений любым удобным способом: (Приложение 1, Слайд 10).

1 способ (подстановки)

2 способ (сложения)

Выберите правильный ответ. (Приложение 1, Слайд 14).

Молодцы! А теперь мы оказались возле звезды по имени Солнце.

Кто прочитает, что это за звезда? (Приложение 1, Слайд17).

VI. Домашнее задание.

1. Решить систему уравнений любым удобным способом: (Приложение 1, Слайд 11).

1 способ (подстановки).

2 способ (сложения).

VII. Итог урока.

Алгебра и начала математического анализа. 11 класс

Системы уравнений. Методы решения систем уравнений
Решение задачи
Решение задачи
Необходимо запомнить

Итак, на уроке мы вспомнили два основных метода решения систем уравнений: метод подстановки и метод сложения. Эти методы применимы к различным видам систем уравнений.

Кроме этих методов были рассмотрены частные случаи. В случае, когда одно из уравнений является частью другого или когда два уравнения совместно могут составить формулу сокращенного умножения. Так же мы выяснили, что и при решении систем уравнений применима замена переменных, позволяющая упростить решение.

Системы уравнений. Методы решения систем уравнений

Пусть заданы функции $f(x)$ и $g(x)$. Если относительно равенства поставлена задача отыскания всех значений переменной, при которых получается верное числовое равенство, то говорят, что задано уравнение с одной переменной.

Уравнение с двумя переменными $x$ и $y$ имеет вид $f (x,y ) = g (x,y)$, где $f$ и $g$ — выражения с переменными $x$ и $y$ .

Если ставится задача найти множество общих решений двух или нескольких уравнений с двумя переменными, то говорят, что надо решить систему уравнений. Систему двух уравнений с двумя переменными будем записывать так:

$\begin & f_1(x,y) = y_1 (x,y)\\ & f_2(x,y) = y_2(x,y)\end$

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:


источники:

http://resh.edu.ru/subject/lesson/4134/main/

http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij