Интегральное исчисление функции нескольких переменных дифференциальные уравнения

Интегральное исчисление функции нескольких переменных

Интегральное исчисление функции нескольких переменных

Основные определения, понятия, свойства.

Правила вычисления двойных интегралов в декартовой и полярной системах координат; тройных интегралов в декартовой, цилиндрической и сферической системах координат.

Приложения кратных интегралов.

Пусть в плоскости хоу задана замкнутая квадрируемая (имеющей площадь) область Dхоу, ограниченная линией l и включающая ее в себя, и задана функция f(x,y), определенная в этой области.

Диаметром области называется наибольшее из расстояний между точками области.

Шагом разбиения области на конечное число частей называется наибольший из диаметров областей деления. Обычно обозначают λ.

Определение двойного интеграла.

1) Разобьем область Dхоу на n элементарных не пересекающихся областей Δsi : Δs1, Δs2,…, , Δsn диаметрами d1, d2,…, dn соответственно.

4) Составим интегральную сумму: , которая вообще говоря зависит от способа разбиения области на части и от выбора точки Рii, ηi).

5) Если существует конечный предел частичных сумм при λ →0 (или числу разбиений n→∞, что равносильно), то этот предел называется двойным интегралом от функции f(x,y) по заданной области Dхоу: .

Приложения двойного интеграла.

1) Если f(x,y) > 0 в области Dхоу, то двойной интеграл равен объему цилиндрического тела, ограниченного сверху поверхностью z = f(x,y), снизу – областью Dхоу, сбоку – цилиндрическими поверхностями с образующими, параллельными оси Oz, то есть: V = .

2) Если f(x,y) = 1 в области Dхоу, то двойной интеграл равен площади области D: S = .

3) Если μ(x,y) > 0 – плотность в каждой точке области Dхоу, то двойной интеграл равен массе пластинки D: m = .

Основные свойства двойного интеграла.

1) ± .

2) = С, где С – постоянная.

3) Если область интегрирования D состоит из двух (или более) непересекающихся частей D1 и D2, то = +.

4) Если m f(x,y) ≤ M в области D, то ms Ms, где s площадь области D, m и M – соответственно наименьшее и наибольшее значения функции f(x,y) в области D.

Вычисление двойных интегралов.

· Если область интегрирования D ограничена слева прямой x = a, справа прямой x = b, снизу функцией y = φ(х), сверху непрерывной функцией y = ψ(х), то

· Если область интегрирования D ограничена снизу прямой y = c, сверху прямой y = d, слева непрерывной функцией

.

Правые части приведенных формул называются двукратными (повторными) интегралами. Внешний интеграл всегда имеет переменными интегрирования константы, внутренний – в общем случае функции. Двойной интеграл вычисляется последовательным вычислением определенных интегралов от внутреннего интеграла к внешнему. Все табличные формулы интегрирования и методы вычисления неопределенных интегралов применимы для вычисления кратных интегралов (нахождения первообразных) с последующим применением формулы Ньютона-Лейбница.

Рекомендации по вычислению кратных интегралов.

1) Необходимо изобразить область интегрирования.

2) У внешнего интеграла пределы всегда постоянные.

3) Вычисляя внутренний интеграл по переменной у (или х), переменную х (или у) считаем const.

4) Можно поменять порядок интегрирования: внешний вычислять по у, а внутренний – по х. Пределы интегрирования в этом случае меняются не формально, а из уравнений линий, ограничивающих заданную область.

5) Если области ограничены окружностями, то вычисления проще выполнять в полярной системе координат.

6) Все табличные формулы для неопределенного интеграла применимы для вычисления кратных интегралов.

Пример 1. Вычислить двойной интеграл от функции по области D: треугольник с вершинами в точках А(0;0), В(5;0), С(5;5).

Область ограничена прямыми: прямой АС (её уравнение у = х), осью ОХ (0 ≤ х ≤ 5) и

прямой х = 5 (0 ≤ у ≤ х).

Вычислим двойной интеграл по треугольной области АВС (заштрихована), выбрав следующий порядок интегрирования: во внешнем интеграле по х, во внутреннем – по у.

.

Поменяем порядок интегрирования: во внешнем интеграле по у, во внутреннем – по х. Тогда 0 ≤ у ≤ 5, а у ≤ х ≤ 5.

От порядка интегрирования зависит трудоемкость вычислений.

Пример 2. Вычислить двойной интеграл по области D: треугольник с вершинами в точках

Область ограничена прямыми: прямыми АС (её уравнение у = ), АВ (её уравнение у =- х — 2),

ВС(её уравнение х = 2).

Вычислим двойной интеграл по треугольной области ΔАВС, выбрав следующий порядок интегрирования: во внешнем интеграле по х, во внутреннем – по у. Это рациональное решение.

Вычислим двойной интеграл по треугольной области ΔАВС, выбрав другой порядок интегрирования: во внешнем интеграле по y, во внутреннем – по x. Это не рациональное решение, так как область интегрирования D необходимо разбить на две области: D1 – ΔАВД и D2 –ΔАСД.

Для области D1: – 4 ≤ y ≤ 0, а x меняется от прямой АВ до прямой ВД, то есть – (-y – 2) ≤ х ≤ 2.

Для области D2: 0 ≤ y ≤ 1, а x меняется от прямой АC до прямой ВД, то есть – 4y — 2 ≤ х ≤ 2.

Отметим, что уравнения прямых АВ: у =- х – 2, АС: у = , ВС: х = 2 в этом случае разрешены относительно переменной у (х = f(y)).

Получим уравнения прямых АВ: х = –у – 2, АС: х = 4у – 2, ВС: х = 2

= + =

< отметим, что в отличие от первого варианта решения, здесь нужно вычислить два двойных интеграла>= ☺ Ответ тот же? Проверьте!

При переходе от прямоугольных декартовых координат (x,y) к полярным координатам (ρ,φ), связанным соотношениями , происходит преобразование двойного интеграла по следующей формуле: , где ρ – якобиан преобразования. Если область интегрирования D ограничена двумя лучами φ = α и φ = β, выходящими из полюса, и двумя кривыми, заданными функциями ρ = ρ1(φ) и ρ =ρ2(φ), то двойной интеграл вычисляется по формуле (полюс совмещен с О, полярная ось с Ох): .

Пример 3. Вычислить двойной интеграл по области D, заданной неравенствами: х2 + у2 ≤ -4х и у ≤ — х.

Решение. Построим область интегрирования.

Линия, заданная уравнением х2 + у2 = -4х, окружность (х + 2)2 + у2 = 4 радиуса R = 2 c центром в (-2,0).

Линия, заданная уравнением у = — х, прямая, проходящая через II и IV четверти.

Область интегрирования, соответствующая неравенствам, заштрихована на рисунке.

Перейдем к полярным координатам: ≤ φ ≤, полярный радиус меняется от 0 до окружности. Запишем уравнение окружности в полярной системе координат: . Тогда 0 ≤.

Подынтегральную функцию так же запишем в полярной системе координат .

Далее можем провести вычисления:

.

Заметим, что двойной интеграл является обобщением определенного интеграла на случай функции двух переменных.

Тройной интеграл является обобщением определенного интеграла на случай функции трех переменных.

Теория тройного интеграла аналогична теории двойного интеграла.

Пусть в замкнутой области VOxyz (в пространстве R(3)) задана непрерывная функция u = f(x,y,z).

Определение тройного интеграла.

1) Разобьем область VOхуz на n элементарных не пересекающихся областей ΔVi : ΔV1, ΔV2,…, , ΔVn диаметрами d1, d2,…, dn соответственно.

4) Составим интегральную сумму: , которая вообще говоря зависит от способа разбиения области на части и от выбора точки Рi.

5) Если существует конечный предел частичных сумм при λ →0 (или числу разбиений n→∞, что равносильно), то этот предел называется тройным интегралом от функции f(x,y,z) по заданной области VOхуz: , где dV=dxdydz – элемент объема.

Некоторые свойства тройного интеграла.

1) , где с – const.

2)

3) Если область интегрирования V состоит из двух (или более) непересекающихся частей V1 и V2, то = =

4) Если в области V f(x,y,z) ≥ 0, то и ≥ 0.

5) Если в области V f(x,y,z) ≥ φ(x,y,z), то и .

6) Если в области V f(x,y,z) = 1, то , так как любая интегральная сумма имеет вид численно равна объему тела V.

7) Оценка тройного интеграла mV MV, где m и M соответственно наименьшее и наибольшее значения функции f(x,y,z) а области V.

Вычисление тройного интеграла в декартовых координатах.

Вычисление тройного интеграла сводится к последовательному вычислению трех определенных интегралов от внутреннего к внешнему. У которого пределы интегрирования всегда должны быть постоянными (const).

Пусть область интегрирования V тело, ограниченное

непрерывные функции, проектирующиеся в область Dхоу,

боковая поверхность – цилиндрическая, образующие которой параллельны оси

oz, а направляющей является граница области Dхоу.

.

Если область интегрирования D хоу ограничена слева прямой x = a, справа прямой x = b, снизу функцией y = φ(х), сверху непрерывной функцией y = ψ(х), то .

Если область интегрирования D ограничена снизу прямой y = c, сверху прямой y = d, слева непрерывной функцией x = x1(х), справа непрерывной функцией x = x2(х), то .

Некоторые приложения тройного интеграла.

1) Если в каждой точке области V плотность тела μ(x,y,z)>0, то — масса тела.

2) Если в области V f(x,y,z) = 1, то — объем тела.

Пример 4. Вычислить тройной интеграл по области V, ограниченной плоскостями: x + y + z = 2, z = 1, x = 0, y = 0, z = 0.

Решение. Изобразим тело – это пирамида АВСД. Плотность тела в каждой точке – переменная величина, пропорциональная х. Изобразим бласть Dxoy это треугольник. Замечание. Изображать тело бывает достаточно трудно, поэтому достаточно изобразить его проекцию.

Вычислим тройной интеграл, расставив пределы интегрирования: =

<подошли к вычислению двойного интеграла; расставим пределы интегрирования, зная проекцию тела на плоскость хоу – треугольник> =

.

Цилиндрическая и сферическая системы координат используются для упрощения вычислений тройных интегралов.

Если проекции тела на координатные плоскости – окружности, то проще тройной интеграл вычислять в цилиндрической системе координат.

Если тело ограничено сферами с центром в начале координат и конусами с вершиной в начале координат, то рациональнее вычисления выполнять в сферической системе координат.

Цилиндрическая система координат.

Точку М(x,y,z) в декартовой системе координат определим тройкой новых переменных M(ρ,φ,z) в цилиндрической системе координат, где ρ – длина радиуса-вектора точки М’ (М’ – проекция точки М на плоскость хоу), φ – угол, образованный этим радиус-вектором с осью ох (положительное измерение угла против часовой стрелки), z аппликата точки М. Эти три переменные (ρ,φ,z) называются цилиндрическими координатами точки М.

Цилиндрические координаты связаны с декартовыми следующими соотношениями (1): , причем ρ ≥ 0, 0 ≤ φ ≤ 2π, zR, якобиан преобразования равен как в полярной системе координат ρ.

Тогда .

Пример 5. Вычислить объем тела, ограниченного поверхностями

z = x2 + y2 + 1 и (2).

Решение. Изобрази тело, объем которого будем вычислять. Оно ограничено двумя параболоидами. Его проекция на плоскость хоу – окружность. Решая систему (3) , находим уравнение их пересечения на плоскости z = 2: . Радиус окружности R =1.

Запишем уравнения параболоидов в цилиндрической системе координат, используя формулы связи (1) и уравнения поверхностей (2 и 3): , и границы изменения переменных интегрирования: 0 ≤ φ ≤ 2π; 0 ≤ ρ ≤ 1;

V =

= .

Точку М(x,y,z) в декартовой системе координат определим тройкой новых переменных M(ρ,φ,θ) в сферической системе координат, где ρ – длина радиуса-вектора точки М (ОМ), φ – угол в плоскости хоу, образованный проекцией радиус-вектора (ОМ’) с осью ох (положительное измерение угла против часовой стрелки), θ угол в плоскости уоz от оси oz до ρ (положительное измерение угла по часовой стрелке). Эти три переменные (ρ,φ,θ) называются сферическими координатами точки М.

Сферические координаты связаны с декартовыми следующими соотношениями (4): , причем ρ ≥ 0, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, якобиан преобразования равен ρ2sinθ. Заметим, что уравнение сферы х2+у2+z2=R2 в сферических координатах имеет вид (подставьте координаты (4)): ρ = R.

Тогда .

Пример 6. Вычислить тройной интеграл, где V – шар,

Решение. Исходя из приложений, необходимо вычислить массу шара с переменной плотностью, изменяющейся в каждой точке по закону (смотри подынтегральную функцию): .

Так как область интегрирования – сфера, то вычисления выполним в сферических координатах (4):

=

= <заметим (!), что в сферических координатах тройной интеграл имеет постоянные пределы во всех трех интегралах и в подынтегральных выражениях каждого интеграла переменные разделены, поэтому их можно вычислять в любом порядке> =.

Пример 7. Вычислить объем тела, ограниченного поверхностями:

области, лежащей внутри конуса.

Решение. Решим систему

2z2 = 2, z2 = 1, в нашем случае z ≥ 0, поэтому возьмем , z = 1. Тогда проекция тела на плоскость хоу – окружность x2 + y2 = 1, поэтому 0 ≤ φ ≤ 2π. Значения угла θ найдем из уравнения конуса z = , подставив в него сферические координаты:

tgθ = 1, поэтому и пределы изменения θ примут значения 0 ≤ . Сферический радиус меняется от нуля до сферы: 0 ≤ ρ ≤ , так как в сферических координатах уравнение сферы х2+у2+z2 = 2 имеет вид ρ = .

Далее вычисляем объем тела

= <заметим (!), что в сферических координатах тройной интеграл имеет постоянные пределы во всех трех интегралах и в подынтегральных выражениях каждого интеграла переменные разделены, поэтому их можно вычислять в любом порядке> = .

Интегральное исчисление функции нескольких переменных дифференциальные уравнения

VI .1. Вычисление двойного интеграла

Для функции двух переменных имеет место обобщение определенного интеграла — двойной интеграл, относящийся к кратным интегралам.

Рассмотрим в плоскости x 0 y замкнутую область D с границей L . Пусть непрерывная функция f ( x , y ) определена в области D . Произвольными линиями разобьем область D на конечное число n частей – площадок: . Одновременно будем обозначать через не только названия соответствующих площадок, но и их площади. В каждой из Si (внутри или на границе) возь­ мем точку Pi ; получим n точек: , значения функции в которых . Составим сумму произве­ дений вида :

Эта сумма называется интегральной суммой для функции f ( x , y ) в области D . Если f ≥ 0 в области D , то каждое слагаемое геометрически представляет собой объем малого цилиндра с основанием Si и высотой f ( Pi ). Сумма всех Vi есть сумма объемов указанных элементарных цилинд­ ров, геометрически – объем некоторого «ступенчатого» тела.

Рассмотрим произвольную последовательность интегральных сумм, составленных с помощью функции f ( x , y ) для данной области D :

при различных способах разбиения области D на части Si . Очевидно, при n →∞ максимальный диаметр площадок ∆ Si стремится к нулю .

Теорема 6.1. Если функция f ( x , y ) непрерывна в замкнутой области D , то существует предел последовательности (6.2) инте­ гральных сумм (6.1) при условии, что максимальный диаметр площадок Si стремится к нулю, а n →∞ . Этот предел один и тот же для любой последовательности вида (6.2), то есть он не зависит ни от способов разбиения области D на площадки Si , ни от выбора точек Pi внутри площадок Si

Этот предел (6.3) называется двойным интегралом от функции f ( x , y ) по области D и обозначается

Область D при этом называется областью интегрирования.

1. Вычисление двойного интеграла в декартовой система координат

Рассмотрим область D , лежащую в плоскости x 0 y и являющуюся правильной в направлении оси 0 y . Это означает, что всякая прямая, параллельная оси 0 y и проходящая через внутреннюю точку области, пересекает границу области в двух точках N 1 и N 2.

Мы предположим, что в рассматриваемом случае область D ограничена линиями: причем , а функции φ1( x ) и φ2( x ) непрерывны на отрезке [ a ; b ]. Аналогично определяется область D , правильная в направлении оси 0 x .

Если область D является правильной как в направлении оси 0 x , так и в нап­равлении оси 0 y , то она называется просто правильной областью.

Пусть функция f ( x , y ) непрерывна в области D . Рассмотрим выражение

которое назовем двукратным интегралом от функции f ( x , y ) по обла­сти D . В этом выражении сначала вы­числяется внутренний интеграл, стоящий в скобках, причем интегрирование производится по y , а x считается постоянной величиной. В результате инте­грирования получится непрерывная функция от x :

.

Эту функцию мы интегрируем по x в пределах от a до b :

В результате получается некоторое постоянное число.

Теорема 6.2. Двойной интеграл от непрерывной функции f ( x , y ) по правильной области D равен двукратному интегралу от этой функции по области, то есть

Пусть правильная в направлении оси 0 x область D ограничена линиями , причем .

Очевидно, что в этом случае

Таким образом, для вычисления двойного интеграла его надо представить в виде двукратного, в зависимости от вида области D или подынтегральной функции, либо с помощью формулы (6.5) , либо (6.6) .

Пример 6.1. Вычислить , если область D – прямоугольник, определяемый неравенствами и

Решение. Применим формулу (6.5), считая внутренний интеграл по переменной y :

Если область D является правильной в направлении обеих осей координат, то применимы обе формулы (6.5) и (6.6), следовательно,

Таким образом, повторное интегрирование не зависит от порядка интегрирования. Поэтому при вычислении двойного интеграла следует пользоваться той из двух формул, которая приводит к менее трудоемким выкладкам. Полезно для упражнения в вычислении повторного интегрирования рассматривать задачу о замене порядка интегрирования в двойном интеграле . При этом выполняется следующая последовательность действий:

1) чертят область интегрирования D , которая находится в полосе между прямыми x = a и x = b , при этом ограничена снизу линией y 1( x ), а сверху – линией y 2( x );

2) область D проектируют на ось 0 y и находят уравнения прямых y = c и y = d , ограничивающих снизу и сверху полосу, в которой расположена область D ;

Аналогичные выкладки производят при необходимости замены порядка интегрирования в двойном интеграле :

1) чертят область интегрирования D, которая находится в полосе между прямыми y = c и y = d , при этом ограничена слева линией x =ψ1( y ), а справа – линией x =ψ2( y );

2) область D проектируют на ось 0 x и находят уравнения прямых x = a и x = b , ограничивающих слева и справа полосу, в которой расположена область D ;

Примечание. В случае, когда какая-либо из этих границ состоит из двух или большего числа линий, записанных разными уравнениями, то область D разбивается на части, а интеграл – на сумму интегралов по этим частям

Пример 6.2. Изменить порядок интегрирования .

2. Вычисление двойного интеграла в полярной системе координат

Для вычисления такого двойного интеграла применяют то же правило сведения его к двукратному интегралу. Так, если область D имеет вид, изображенный на рисунке 6.2 (ограничена лучами φ=α и φ=β, где α β, и кривыми , т. е. является правильной: луч, выходящий из полюса, пересекает ее границу L не более чем в двух точках), то правую часть формулы (6.7) можно записать в виде:

Внутренний интеграл берется при постоянном φ и переменной r , при вычислении внешнего интеграла φ становится переменной.

Если полюс O лежит внутри области D , то каждый полярный радиус пересекает контур L в одной точке. При этом следует рассматривать .

Пример 6.3. Вычислить двойной интеграл , г де область D есть полукруг с центром в точке (3;0) и с радиусом, равным 3 (рис. 6.3) .

Переходя к полярной системе координат с помощью (6.8), получаем:

Примечание. Переход к полярным координатам полезен, когда подынтегральная функция имеет вид ; область D есть круг, кольцо или часть таковых. Уравнения линий, ограничивающих область D , также преобразуются к полярным координа­там

Дифференциальные исчисления функции одной и нескольких переменных

Дифференциальное исчисление является разделом математического анализа, который изучает производную, дифференциалы и их использование при исследовании функции.

История появления

Дифференциальное исчисление выделилось в самостоятельную дисциплину во второй половине 17 века, благодаря трудам Ньютона и Лейбница, которые сформулировали основные положения в исчислении дифференциалов и заметили связи между интегрированием и дифференцированием. С того момента дисциплина развивалась вместе с исчислением интегралов, составляя тем самым основу математического анализа. Появление данных исчислений открыло новый современный период в математическом мире и вызвало возникновение новых дисциплин в науке. Также расширило возможность применения математической науки в естествознании и технике.

Основные понятия

Дифференциальное исчисление базируется на фундаментальных понятиях математики. Ими являются: действительное число, непрерывности, функция и предел. Спустя время они приняли современный вид, благодаря интегральным и дифференциальным исчислениям.

Процесс создания

Формирование дифференциального исчисления в виде прикладного, а затем и научного метода произошло перед возникновением философской теории, которую создал Николай Кузанский. Его работы считаются эволюционным развитием из суждений античной науки. Несмотря на то что сам философ математиком не был, его вклад в развитие математической науки неоспорим. Кузанский один из первых ушел от рассмотрения арифметики как максимально точной области науки, поставив математику того времени под сомнения.

У античных математиков универсальным критерием была единица, в то время как философ предложить в качестве новой меры бесконечность взамен точного числа. В связи с этим инвертируется представление точности в математической науке. Научное знание, по его представлению, делится на рассудочное и интеллектуальное. Второе является более точным, по мнению ученого, поскольку первое дает лишь приблизительный результат.

Основная идея и понятие в дифференциальном исчислении связаны с функцией в малых окрестностях определенных точек. Для этого необходимо создать математический аппарат для исследований функции, поведение которой в малой окрестности установленных точек близко к поведению многочлена или линейной функции. Основано это на определении производной и дифференциала.

Появление понятия производной было вызвано большим число задач из естественных наук и математики, которые приводили к нахождению значений пределов одного типа.

Одной из основных задач, которые даются как пример, начиная со старших классов школы, является определение скорости движения точки по прямой линии и построение касательной линии к этой кривой. Дифференциал связан с этим, поскольку есть возможность приблизить функцию в малой окрестности рассматриваемой точки линейной функции.

По сравнению с понятием производной функции действительной переменной, определение дифференциалов просто переходит на функцию общей природы, в частности на изображение одного евклидова пространства на другое.

Производная

Пусть точка движется по направлению оси Оу, за время возьмем х, которое отсчитывается от некоего начала момента. Описать такое перемещение можно по функции у=f(x), которая ставится в соответствие каждому временному моменту х координаты перемещаемой точки. Данную функцию в механике принять звать законом движения. Основной характеристикой движения, в особенности неравномерного, является мгновенная скорость. Когда точка перемещается по оси Оу согласно закону механики, то в случайный временной момент х она приобретает координату f(x). Во временной момент х + Δх, где Δх обозначает приращение времени, ее кордината будет f(х + Δх). Так формируется формула Δy = f(х + Δх) — f(х), которую называют приращением функции. Она представляет собой пройденный точкой путь за время от х до х + Δх.

В связи с возникновением этой скорости в момент времени вводится производная. В произвольной функции производную в фиксированной точке называют пределом (при условии его существования). Обозначаться она может определенными символами:

Процесс вычисления производной именуют дифференцированием.

Дифференциальное исчисление функции нескольких переменных

Данный метод исчисления применятся при исследовании функции с несколькими переменными. При наличии двух переменных х и у, частная производная по х в точке А зовется производной этой функции по х с фиксированным у.

Может обозначаться следующими символами:

Необходимые навыки

Чтобы успешно изучить и уметь решать диффуры, требуются навыки в интегрировании и дифференцировании. Чтобы было легче разобраться в дифференциальных уравнениях, следует хорошо понимать тему производной и неопределенный интеграл. Также не помешает научиться искать производную от неявно заданной функции. Связано это с тем, что в процессе изучения придется часто использовать интегралы и дифференцирование.

Типы дифференциальных уравнений

Практически во всех контрольных работах, связанных с дифференциальными уравнениями первого порядка, существует 3 вида уравнений: однородные, с разделяющимися переменными, линейные неоднородные.

Имеются и более редкие разновидности уравнений: с полными дифференциалами, уравнения Бернулли и прочие.

Основы решения

Для начала следует вспомнить алгебраичные уравнения из школьного курса. В них содержатся переменные и числа. Для решения обычного уравнения следует найти множество чисел, удовлетворяющих заданному условию. Как правило, такие уравнения имели одни корень, и для проверки правильности следовало лишь подставить это значение на место неизвестной.

Дифференциальное уравнение схоже с этим. В общем случае такое уравнение первого порядка включает:

  • Независимую переменную.
  • Производную первой функции.
  • Функцию или зависимую переменную.

В отдельных случаях может отсутствовать одна из неизвестных, х или у, однако это не столь важно, так как необходимо наличие первой производной, без производных высших порядков, чтобы решение и дифференциальное исчисление были верны.

Решить дифференциальное уравнение — это значит отыскать множество всех функций, подходящих заданному выражению. Подобное множеств функций часто называется общим решением ДУ.

Интегральное исчисление

Интегральное исчисление является одним из разделов математического анализа, который изучает понятие интеграла, свойства и методы его вычисления.

Зачастую вычисление интеграла встречается при вычислении площади криволинейной фигуры. Под этой площадью подразумевается предел, к которому стремится площадь вписанного в заданную фигуру многоугольника с постепенным возрастанием его стороны, при этом данные стороны могут быть выполнены менее всякого ранее указанного произвольного малого значения.

Главная идея в вычислении площади произвольной геометрической фигуры состоит в подсчёте площади прямоугольника, то есть доказательстве, что его площадь равняется произведению длины на ширину. Когда речь идет о геометрии, то все построения производятся при помощи линейки и циркуля, и тогда отношение длины к ширине является рациональным значением. При подсчете площади прямоугольного треугольника можно определить, что если отложить такой же треугольник рядом, то образуется прямоугольник. В параллелограмме площадь подсчитывается подобным, но чуть более усложненным методом, через прямоугольник и треугольник. В многоугольниках площадь считают через входящие в него треугольники.

При определении пощади произвольной кривой данный метод не подойдет. Если разбить её на единичные квадраты, то останутся незаполненные места. В этом случае пытаются использовать два покрытия, с прямоугольниками сверху и снизу, в результате те включают график функции и не включают. Важным здесь остается способ разбивания на эти прямоугольники. Также если брать разбивания все более уменьшающиеся, то площадь сверху и снизу должна сойтись на определенном значении.

Следует вернуться к способу разделения на прямоугольники. Имеется два популярных метода.

Риманом было формализовано определение интеграла, созданное Лейбницем и Ньютоном, как площади подграфика. В этом случае были рассмотрены фигуры, состоящие из некоторого числа вертикальных прямоугольников и полученные при разделении отрезка. Когда при уменьшении разбивания имеется предел, к которому сводится площадь подобной фигуры, этот предел называют интегралом Римана функции на заданном отрезке.

Вторым методом является построение интеграла Лебега, состоящее в том, что за место разделения определяемой области на части подынтегральной функции и составления затем интегральной суммы из полученных значений в этих частях, на интервалы делится её область значений, а после суммируется с соответствующими мерами прообразов этих интегралов.

Современные пособия

Одно из основных пособий по изучению дифференциального и интегрального исчисления написал Фихтенгольц — «Курс дифференциального и интегрального исчисления». Его учебник является фундаментальным пособием по изучению математического анализа, который выдержал много изданий и переводов на другие языки. Создан для студентов вузов и долгое время применяется во множестве учебных заведений как одно из основных пособий по изучению. Дает теоретические данные и практические умения. Впервые издан в 1948 году.

Алгоритм исследования функции

Чтобы исследовать методами дифференциального исчисления функцию, необходимо следовать уже заданному алгоритму:

  1. Найти область определения функции.
  2. Найти корни заданного уравнения.
  3. Подсчитать экстремумы. Для этого следует вычислить производную и точки, где она равняется нулю.
  4. Подставляем полученное значение в уравнение.

Разновидности дифференциальных уравнений

ДУ первого порядка (иначе, дифференциальное исчисление одной переменной) и их виды:

  • Уравнение с разделяющимися переменными: f(y)dy=g(x)dx.
  • Простейшие уравнения, или дифференциальное исчисление функции одной переменной, имеющие формулу: y’=f(x).
  • Линейное неоднородное ДУ первого порядка: y’+P(x)y=Q(x).
  • Дифференциальное уравнение Бернулли: y’+P(x)y=Q(x)y a .
  • Уравнение с полными дифференциалами: P(x,y)dx+Q(x,y)dy=0.

Дифференциальные уравнения второго порядка и их виды:

  • Линейное однородное дифференциальное уравнение второго порядка с постоянными значениями коэффициента: y n +py’+qy=0 p, q принадлежит R.
  • Линейное неоднородное дифференциальное уравнение второго порядка с постоянным значением коэффициентов: y n +py’+qy=f(x).
  • Линейное однородное дифференциальное уравнение: y n +p(x)y’+q(x)y=0, и неоднородное уравнение второго порядка: y n +p(x)y’+q(x)y=f(x).

Дифференциальные уравнения высших порядков и их виды:

  • Дифференциальное уравнение, допускающие понижение порядка: F(x,y (k) ,y (k+1) . y (n) =0.
  • Линейное уравнение высшего порядка однородное: y (n) +f(n-1)y (n-1) +. +f1y’+f0y=0, и неоднородное: y (n) +f(n-1)y (n-1) +. +f1y’+f0y=f(x).

Этапы решения задачи с дифференциальным уравнением

С помощью ДУ решаются не только математические или физические вопросы, но и различные проблемы из биологии, экономики, социологии и прочего. Несмотря на большое разнообразие тем, следует придерживаться единой логической последовательности при решении подобных проблем:

  1. Составление ДУ. Один из наиболее сложных этапов, который требует максимальный точности, поскольку любая ошибка приведет к полностью неверным итогам. Следует учитывать все факторы, влияющие на процесс, и определить начальные условия. Также следует основываться на фактах и логических выводах.
  2. Решение составленного уравнения. Этот процесс проще первого пункта, поскольку требует лишь строгого выполнения математических подсчетов.
  3. Анализ и оценка полученных итогов. Выведенное решение следует оценить для установки практической и теоретической ценности результата.

Пример использования дифференциальных уравнений в медицине

Использование ДУ в области медицины встречается при построении эпидемиологической математической модели. При этом не стоит забывать, что данные уравнения также встречаются в биологии и химии, которые близки к медицине, потому что в ней немаловажную роль играет исследование разных биологических популяций и химических процессов в теле человека.

В приведённом примере с эпидемией можно рассматривать распространение инфекции в изолированном обществе. Обитатели подразделяются на три вида:

  • Инфицированные, численность x(t), состоявшие из особей, носителей инфекции, каждый из которых заразен (инкубационный период короткий).
  • Второй вид включает восприимчивых особей y(t), способных заразиться при контактировании с инфицированными.
  • Третий вид включает в себя невосприимчивых особей z(t), которые имеют иммунитет или погибли из-за болезни.

Количество особей постоянно, учет рождения, естественных смертей и миграции не учитывается. В основе будет иметься две гипотезы.

Процент заболеваемости в определённый временной момент равняется x(t)y(t) (основывается предположение на теории, что число заболевших пропорционально количеству пересечений между больными и восприимчивыми представителями, которое в первом приближении будет пропорционально x(t)y(t)), в связи с этим количество заболевших возрастает, а число восприимчивых уменьшается со скоростью, которая вычисляется по формуле ax(t)y(t) (a > 0).

Число невосприимчивых особей, которые приобрели иммунитет или погибли, возрастает со скоростью, которая пропорциональна количеству заболевших, bx(t) (b > 0).

В итоге можно составить систему уравнений с учетом всех трех показателей и на её основе сделать выводы.

Пример использования в экономике

Дифференциальное исчисление часто применяется при экономическом анализе. Основной задачей в экономическом анализе считается изучение величин из экономики, которые записаны в форму функции. Это используется при решении задач вроде изменения дохода сразу после увеличения налогов, ввода пошлин, изменения выручки компании при изменении стоимости продукции, в какой пропорции можно заменить выбывших работников новым оборудованием. Чтобы решить такие вопросы, требуется построить функцию связи из входящих переменных, которые после изучаются с помощью дифференциального исчисления.

В экономической сфере часто необходимо отыскать наиболее оптимальные показатели: максимальную производительность труда, наивысший доход, наименьшие издержки и прочее. Каждый такой показатель является функцией из одного или нескольких аргументов. К примеру, производство можно рассмотреть как функцию из затраты труда и капитала. В связи с этим нахождение подходящего значения можно свести к отысканию максимума или минимума функции из одной или нескольких переменных.

Такого рода задачи создают класс экстремальных задач в экономической области, для решения которых необходимо дифференциальное исчисление. Когда экономический показатель требуется минимизировать или максимизировать как функцию от другого показателя, то в точке максимума отношение приращения функции к аргументам будет стремиться к нулю, если приращение аргумента стремится к нулевому значению. Иначе же, когда подобное отношение стремится к некому положительному или отрицательному значению, указанная точка не является подходящей, потому что при увеличении или уменьшении аргумента можно поменять зависимую величину в необходимом направлении. В терминологии дифференциального исчисления это будет значить, что требуемым условием для максимума функции является нулевое значение её производной.

В экономике нередко встречаются задачи на нахождение экстремума функции с несколькими переменными, потому что экономические показатели складываются из многих факторов. Подобные вопросы хорошо изучены в теории функций нескольких переменных, применяющей методы дифференциального вычисления. Подобные задачи включают в себя не только максимизируемые и минимизируемые функции, но и ограничения. Подобные вопросы относятся к математическому программированию, и решаются они с помощью специально разработанных методов, также опирающихся на этот раздел науки.

Среди методов дифференциального исчисления, используемых в экономике, важным разделом является предельный анализ. В экономической сфере этот термин обозначает совокупность приемов исследования изменяемых показателей и результатов при смене объемов создания, потребления, основываясь на анализе их предельных показателей. Предельным показателем считается производная или частные производные при нескольких переменных.

Дифференциальное исчисление нескольких переменных — немаловажная тема из области математического анализа. Для подробного изучения можно использовать различные учебные пособия для высших учебных заведений. Одно из наиболее известных создал Фихтенгольц — «Курс дифференциального и интегрального исчисления». Как заметно из названия, для решения дифференциальных уравнений немалое значение имеют навыки в работе с интегралами. Когда имеет место дифференциальное исчисление функции одной переменной, решение становится проще. Хотя, надо заметить, оно подчиняется тем же основным правилам. Чтобы на практике исследовать функцию дифференциальным исчислением, достаточно следовать уже имеющемуся алгоритму, который дается в старших классах школы и лишь немногим осложняется при вводе новых переменных.


источники:

http://www.sites.google.com/site/vyssaamatem/glava-vi-osnovy-integralnogo-iscislenia-funkcii-neskolkih-peremennyh

http://fb.ru/article/321745/differentsialnyie-ischisleniya-funktsii-odnoy-i-neskolkih-peremennyih