Интегральные уравнения с вырожденным ядром примеры решения

Решения интегральных уравнений онлайн

В этом разделе мы рассмотрим типовые задачи по интегральным уравнениям с решениями. Интегральное уравнение содержит неизвестную функцию под знаком интеграла (по аналогии как дифференциальное — функцию под знаком дифференциала:)).

Выделяют два основных класса интегральных уравнений: уравнения Фредгольма I и II рода:

$$ (I) \quad \int_a^b K(x,s)u(s)ds = f(x),\\ (II) \quad u(x)=\int_a^b K(x,s)u(s)ds + f(x). $$

В случае переменного верхнего предела интегрирования получаем соответственно уравнение Вольтерра I и II рода:

$$ (I) \quad \int_a^x K(x,s)u(s)ds = f(x),\\ (II) \quad u(x)=\int_a^x K(x,s)u(s)ds + f(x). $$

Это линейные неоднородные уравнения (при $f(x)=0$ — однородные), иногда рассматриваются более общий случай с параметром $\lambda$ перед интегралом.

Ниже вы найдете примеры нахождения решений интегральных уравнений, собственных значений и функций, исследования ядра, применения интегральных уравнений для решения других задач.

Примеры решений интегральных уравнений

Задача 1. Пользуясь теоремой Гильберта-Шмидта, исследовать и решить интегральное уравнение 2-го рода $(E+\lambda A)x=y$ в гильбертовом пространстве $X$.

Задача 2. Найти собственные значения и собственные функции уравнения:

$$ y(x)=\lambda \int_0^1 (\cos 2\pi x +2x \sin 2\pi t +t \sin \pi x)y(t)dt. $$

Задача 3. Решить уравнение Вольтерры, сведя его к обыкновенному дифференциальному уравнению.

Задача 4. Решить или установить неразрешимость уравнений с вырожденным ядром.

Задача 5. Решить интегральное уравнение, сведя его предварительно к обыкновенному дифференциальному уравнению.

Задача 6. Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром $K(x,t)=x^<1/3>t^<2/3>$.

Задача 7. Исследовать решения уравнения с вырожденным ядром при различных значениях параметра $\lambda$ (ограничиться случаем вещественных характеристических чисел).

$$ y(x)-\lambda \int_0^1 x y(t)dt = \sin 2\pi x. $$

Задача 8. Для симметричного ядра $$K(x,t) = \frac<1> <2>\sin |x-t| \quad (0 \le, x,t \le \pi)$$ найти характеристические числа и соответствующие им собственные функции, сводя интегральное уравнение к однородной краевой задаче для обыкновенного дифференциального уравнения.

Задача 9. Решить краевую задачу, используя функцию Грина

Задача 10. Применяя преобразование Лапласа, решить интегральное уравнение

Помощь с интегральными уравнениями

Если вам нужна помощь с решением задач и контрольных по интегральным уравнениям (и другим разделам математического и функционального анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 200 рублей , оформление производится в Word, срок от 1 дня.

Интегральные уравнения, Задачи и примеры с подробными решениями, Краснов М.И., Киселев А.И., Макаренко Г.И., 2003

Интегральные уравнения, Задачи и примеры с подробными решениями, Краснов М.И., Киселев А.И., Макаренко Г.И., 2003.

В настоящем учебном пособии авторы предлагают задачи по методам решения интегральных уравнений. В начале каждого раздела книги приводится сводка основных теоретических положений, определений и формул, а также подробно разбирается более 70 типовых примеров. В книге содержится 350 задач и примеров для самостоятельного решения, большинство которых снабжено ответами и указаниями к решению.
Пособие предназначено для студентов технических ВУЗов с математической подготовкой, а также для всех лиц, желающих познакомиться с методами решений основных типов интегральных уравнений.

Основная трудность применения метода последовательных приближений состоит в вычислении интегралов в формулах (7). Как правило, приходится применять формулы приближенного интегрирования. Поэтому и здесь целесообразно заменить данное ядро вырожденным с помощью тейлоровского разложения, а затем уже ввести метод итераций.

Рассмотрим одну задачу, приводящую к интегральному уравнению Вольтерра типа свертки.
Магазин покупает и продает различные товары. Предполагается, что:
1) покупка и продажа суть непрерывные процессы, и купленные товары немедленно поступают в продажу;
2) магазин приобретает каждую новую партию любого товара в таком количестве, какое он может продать в промежуток времени Т, один и тот же для всех покупок;
3) каждая новая партия товара распродается равномерно в течение времени Т.
Магазин начинает продажу новой партии товара, общая стоимость которого равна единице. Требуется найти закон y(t), по которому он должен производить покупки, для того чтобы стоимость наличного товара оставалась постоянной.

ОГЛАВЛЕНИЕ
Предварительные замечания 3
Глава 1. Интегральные уравнения Вольтерра 9
§ 1. Основные понятия 9
§ 2. Связь между линейными дифференциальными уравнениями и интегральными уравнениями Вольтерра 11
§ 3. Резольвента интегрального уравнения Вольтерра. Решение интегрального уравнения с помощью резольвенты 15
§ 4. Эйлеровы интегралы 21
§ 5. Интегральное уравнение Абеля и его обобщения 25
Глава 2. Интегральные уравнения Фредгольма 30
§ 6. Уравнения Фредгольма. Основные понятия 30
§ 7. Метод определителей Фредгольма 34
§ 8. Итерированные ядра. Построение резольвенты с помощью итерированных ядер 39
§ 9. Интегральные уравнения с вырожденным ядром 49
§ 10. Характеристические числа и собственные функции 54
§ 11. Решение однородных интегральных уравнений с вырожденным ядром 72
§ 12. Неоднородные симметричные уравнения 73
§ 13. Альтернатива Фредгольма 79
§ 14. Построение функции Грина для обыкновенных дифференциальных уравнений 88
§ 15. Применение функции Грина для решения краевых задач 98
§ 16. Краевые задачи, содержащие параметр, и сведение их к интегральным уравнениям 101
Глава 3. Применение интегральных преобразований к решению интегральных уравнений 105
§ 17. Применение преобразования Фурье к решению некоторых интегральных уравнений 105
§ 18. Применение преобразования Лапласа к решению некоторых интегральных уравнений 111
1°. Интегральные уравнения Вольтерра типа свертки 111
2°. Системы интегральных уравнений Вольтерра типа свертки 114
3. Интегро-дифференциальные уравнения 116
4°. Интегральные уравнения Вольтерра с пределами (ж, +оо) 118
5°. Обобщенная теорема умножения и некоторые ее применения 120
§ 19. Применение преобразования Меллина к решению некоторых интегральных уравнений 123
Глава 4. Интегральные уравнения 1-го рода 128
§ 20. Интегральные уравнения Вольтерра 1-го рода 128
§ 21. Интегральные уравнения Вольтерра 1-го рода типа свертки 130
§ 22. Интегральные уравнения Фредгольма 1-го рода 136
Глава 5. Приближенные методы решения интегральных уравнений 146
§ 23. Замена ядра интегрального уравнения вырожденным ядром 146
§ 24. Замена интеграла конечной суммой 151
§ 25. Метод последовательных приближений 154
1°. Интегральные уравнения Вольтерра 2-го рода 154
2°. Интегральные уравнения Фредгольма 2-го рода 159
3°. Интегральные уравнения Фредгольма 1-го рода 161
§ 26. Метод Бубнова—Пшёркина 163
§ 27. Приближенные методы отыскания характеристических чисел и собственных функций симметричных ядер 165
1°. Метод Ритца 165
2°. Метод следов 167
3°. Метод Келлога 169
Ответы 174
Приложение. Специальные функции 188.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Интегральные уравнения, Задачи и примеры с подробными решениями, Краснов М.И., Киселев А.И., Макаренко Г.И., 2003 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Конспект лекций по дисциплине «Математический аппарат теории сигналов и систем» (стр. 3 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7

;

;

;

Остальные .

;

;

;

,

где — единственное собственное число.

,

где — единственная собственная функция.

7. Интегральные уравнения с вырожденным ядром

Если ядро интегрального уравнения вырождено, то решение его гораздо проще.

.

Если ядро такого вида, то оно вырождено.

Предполагается, что функции линейно независимы между собой. В этом случае интегральное уравнение Фредгольма 2-го рода можно выразить следующим образом:

,

где .

Эта запись говорит о том, что решение интегрального уравнения сводится к определению константы Cj.

Умножим на bj и проинтегрируем по t:

;

.

Эта запись справедлива для всех индексов.

;

.

Если D¹0, то находим решение обычными способами.

Вычислив коэффициенты, подставляем в уравнение.

;

Умножим обе части первого уравнения на b1 и проинтегрируем по t:

Это интегральное уравнение всегда имеет решение, так как D¹0 всегда при действительных l.

Резольвента таких уравнений всегда дробно-рациональная функция.

8. Использование вырожденных ядер для приблизительного решения интегральных уравнений

Пусть имеем некоторое интегральное уравнение, у которого ядро k(t,S) — вырожденное.

На интервале интегрирования не вырожденное ядро заменяют вырожденным приблизительным. При этом решение получается достаточно близким к истинному решению. Чем ближе приближение, тем точнее решение.

Используются различные апроксимации. Проще всего заменять суммой или тригонометрическими функциями.

Точное решение

На интервале [0;1] отклонение от точного решения составляет всего 0,8%.

9. Принцип последовательных приближений («сжатых отображений»)

Строится последовательность функций. Первая функция – произвольная. А потом из нее строится следующая функция, и т. д.

Необходимо выполнение следующих условий:

2) всегда не бесконечно;

Если все эти условия выполнены, то ряд последовательных приближений строится по следующему правилу:

С помощью рассмотренного метода решить интегральное уравнение

.

Ядро — функция непрерывная.

.

Проверяем применимость метода

.

Первую функцию возьмем .

;

;

;

.

Удачный выбор приближения может сократить время приближения.

10. Применение метода приближенных решений для решения интегральных уравнений Вольтерра 2-го рода

— интегральное уравнение Вольтерра.

Эти уравнения можно рассматривать как частный случай уравнений Фредгольма, если при . Отличие состоит в том, что сравнение с не нужно (— любое)

Найти неизвестную функцию :

Положим . Тогда .

.

11. Применение метода приближенных решений для решения некоторых видов нелинейных интегральных уравнений

.

Условия применимости метода:

1. должна быть непрерывной функцией, должна быть непрерывной функцией по всем трем аргументам.

2. Ядро должно удовлетворять условиям Липшица:

,

где L — постоянная Липшица.

.

L обычно берут минимально возможной.

.

Решить интегральное уравнение вида

.

Если ядро k(t,S,z) имеет ограниченную производную по z, то L можно выбрать из условия:

12. Решение системы интегральных уравнений

Ввести можно по аналогии с алгебраическими уравнениями.

.

Бывают случаи, когда требуется найти несколько неизвестных функций, которые:

1) Определяются интегральными соотношениями.

2) Еще и определенным образом связаны между собой.

Запись, описывающая их, называется системой интегральных уравнений:

.

Обычно рассматривается m=N. В этом случае эффективен следующий метод:

От набора , , переходят к F(t), .

От набора переходят к Ф.


источники:

http://obuchalka.org/2012080266296/integralnie-uravneniya-zadachi-i-primeri-s-podrobnimi-resheniyami-krasnov-m-i-kiselev-a-i-makarenko-g-i-2003.html

http://pandia.ru/text/80/170/54388-3.php