Интегральные уравнения урысона и гаммерштейна

Серия Математика. Механика. Информатика

Рубрики

Для цитирования:

Хачатрян Х. А., Сардарян Т. Г. О разрешимости одного класса нелинейных интегральных уравнений типа Урысона на всей прямой // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2017. Т. 17, вып. 1. С. 40-50. DOI: 10.18500/1816-9791-2017-17-1-40-50

XML для сайта doaj.org

О разрешимости одного класса нелинейных интегральных уравнений типа Урысона на всей прямой

В настоящей статье исследуется один класс нелинейных интегральных уравнений типа Урысона на всей оси. Рассматриваемые уравнения имеют применение в различных областях математической физики. Предполагается, что нелинейный интегральный оператор типа Гаммерштейна с разностным ядром служит локальной минорантой в смысле М. А. Красносельского для исходного оператора Урысона. Сочетание методов построения инвариантных конусных отрезков для соответствующего нелинейного оператора Урысона с методами теории монотонных операторов и консервативных ин- тегральных уравнений типа свертки при определенных ограничениях на нелинейность позволяет доказать конструктивные теоремы существования однопараметрических семейств положительных решений. Описывается множество параметров и изучается асимптотическое поведение построенных решений в бесконечности. В конце приведены частные примеры указанных уравнений, для которых выполняются все условия сформулированных теорем.

Интегральные уравнения урысона и гаммерштейна

Последние действия на сайте

Интегральное уравнение

Материал из Википедии — свободной энциклопедии

Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.

Классификация интегральных уравнений

Линейные интегральные уравнения

Это интегральные уравнения, в которые неизвестная функция входит линейно:

где — искомая функция, f(x) , — известные функции, λ — параметр. Функция называется ядром интегрального уравнения. В зависимости от вида ядра и свободного члена линейные уравнения можно разделить еще на несколько видов.

Уравнения Фредгольма

Уравнения Фредгольма 2-го рода

Уравнения Фредгольма 2-го рода — это уравнения вида:

Пределы интегрирования могут быть как конечными, так и бесконечными. Переменные удовлетворяют неравенству: , а ядро и свободный член должны быть непрерывными: , либо удовлетворять условиям:

Ядра, удовлетворяющие последнему условию, называют фредгольмовыми. Если на , то уравнение называется однородным, иначе оно называется неоднородным интегральным уравнением.

Уравнения Фредгольма 1-го рода

Уравнения Фредгольма 1-го рода выглядят также, как и уравнение Фредгольма 2-го рода, только в них отсутствует часть, содержащая неизвестную функцию вне интеграла:

при этом ядро и свободный член удовлетворяют условиям, сформулированным для уравнений Фредгольма 2-го рода.

Уравнения Вольтерра

Уравнения Вольтерра 2-го рода

Уравнения Вольтерра отличаются от уравнений Фредгольма тем, что один из пределов интегрирования в них является переменным:

Уравнения Вольтерра 1-го рода

Также, как и для уравнений Фредгольма, в уравнениях Вольтерра 1-го рода отсутствует неизвестная функция вне интеграла:

В принципе, уравнения Вольтерра можно рассматривать как частный случай уравнений Фредгольма, если переопределить ядро:

Однако некоторые свойства уравнений Вольтерра не могут быть применены к уравнениям Фредгольма.

Нелинейные уравнения

Можно придумать немыслимое многообразие нелинейных уравнений, поэтому дать им полную классификацию не представляется возможным. Вот лишь их некоторые типы, имеющие большое теоретическое и прикладное значение.

Уравнения Урысона

Постоянная M — это некоторое положительное число, которое заранее не всегда может быть определено.

Уравнения Гаммерштейна

Уравнения Гаммерштейна являются важным частным случаем уравнения Урысона:

где — фредгольмово ядро.

Уравнения Ляпунова — Лихтенштейна

Именами Ляпунова — Лихтенштейна принято называть уравнения, содержащие существенно нелинейные операторы, например, уравнение вида:

Нелинейное уравнение Вольтерра

где функция непрерывна по совокупности своих переменных.

Методы решения

Прежде, чем рассмотреть некоторые методы решения интегральных уравнений, следует заметить, что для них, как и для дифференциальных уравнений не всегда удается получить точное аналитическое решение. Выбор метода решения зависит от вида уравнения. Здесь будут рассмотрены несколько методов для решения линейных интегральных уравнений.

Преобразование Лапласа

Метод преобразования Лапласа может быть применён к интегральному уравнению, если входящий в него интеграл имеет вид свёртки двух функций:

то есть, когда ядро является функцией разности двух переменных:

Например, дано такое уравнение:

Применим преобразование Лапласа к обеим частям уравнения:

Применяя обратное преобразование Лапласа, получим:

Метод последовательных приближений

Метод последовательных приближений применяется для уравнений Фредгольма 2-го рода, если выполняется условие:

Это условие необходимо для сходимости ряда Лиувилля — Неймана:

который и является решением уравнения. (K k f)(x) — k -ая степень интегрального оператора (Kf)(x) :

Впрочем, такое решение является хорошим приближением лишь при достаточно малых | λ | .

Метод резольвент

Метод резольвент является не самым быстрым решением интегрального уравнения Фредгольма второго рода, однако иногда нельзя указать других путей решения задачи.

Если ввести следующие обозначения:

то повторными ядрами ядра будут ядра :

Ряд, составленный из повторных ядер,

называется резольвентой ядра и является регулярно сходящимся при , и вышеупомянутому условию сходимости ряда Лиувилля — Неймана. Решение интегрального уравнения представляется по формуле:

Например, для интегрального уравнения

повторными будут следующие ядра:

а резольвентой — функция

Тогда решение уравнения находится по формуле:

Метод сведения к алгебраическому уравнению

В случае, если ядро интегрального уравнения Фредгольма является вырожденным, то есть , само интегральное уравнение можно свести к системе алгебраических уравнений. Действительно, в этом случае уравнение можно переписать так:

где . Умножив предыдущее равенство на gi(x) и проинтегрировав его по x на отрезке , приходим к системе алгебраических уравнений для неизвестных чисел ci :

где и — числовые коэффициенты.

Приложения

Термин «интегральное уравнение» ввёл в 1888 году Дюбуа-Реймон, однако первые задачи с интегральными уравнениями решались и ранее. Например, в 1811 году Фурье решил задачу об обращении интеграла, которая теперь носит его имя.

Формула обращения Фурье

Задача состоит в нахождении неизвестной функции f(y) по известной функции g(x) :

Фурье получил выражение для функции f(y) :

Сведение задачи Коши к интегральному уравнению

К нелинейным интегральным уравнениям Вольтерра приводит задача Коши для обыкновенных дифференциальных уравнений:

В самом деле, это уравнение можно проинтегрировать по t от a до t :

Решение начальной задачи для линейных дифференциальных уравнений приводит к линейным интегральным уравнениям Вольтерра 2-го рода. Этим еще в 1837 году воспользовался Лиувилль. Пусть, например, поставлена задача:

Для уравнения с постоянными коэффициентами с теми же начальными условиями:

решение может быть найдено методом вариации постоянных и представлено в виде:

Тогда для исходного уравнения получается:

— интегральное уравнение Вольтерра 2-го рода.

a,» src=»http://upload.wikimedia.org/math/3/c/c/3cca9038417f8968682c783191e3f6c7.png» />

также может быть сведено к интегральному уравнению Вольтерра 2-го рода.

Задача Абеля

Исторически считается, что первой задачей, которая привела к необходимости рассмотрения интегральных уравнений, является задача Абеля. В 1823 году Абель, занимаясь обобщением задачи о таутохроне, пришёл к уравнению:

где f(x) — заданная функция, а — искомая. Это уравнение есть частный случай линейного интегрального уравнения Вольтерра 1-го рода. Уравнение Абеля интересно тем, что к нему непосредственно приводит постановка той или иной конкретной задачи механики или физики (минуя дифференциальные уравнения).

У Абеля формулировка задачи выглядела примерно так:

Материальная точка под действием силы тяжести движется в вертикальной плоскости по некоторой кривой. Требуется определить эту кривую так, чтобы материальная точка, начав свое движение без начальной скорости в точке кривой с ординатой x , достигла оси Oξ за время t = f1(x) , где f1(x) — заданная функция.

Если обозначить угол между касательной к траектории и осью Oξ как β и применить законы Ньютона, можно прийти к следующему уравнению:

Конспект лекций по дисциплине «Математический аппарат теории сигналов и систем» (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

«Владимирский государственный университет имени

Александра Григорьевича и Николая Григорьевича Столетовых»(ВлГУ)

«Математический аппарат теории сигналов и систем»

Направление подготовки: 210400 «Радиотехника»

Квалификация (степень) выпускника: магистр________________

Форма обучения:_____________очная _______________________________

к конспекту лекций по дисциплине «Математический аппарат теории сигналов и систем»

Направление подготовки магистров должно включать в себя знакомство с современными математическими методами, которые являются основами научных расчетов и исследований и используются для построения радиотехнических систем. Это невозможно без углубленного изучения продвинутых математических разделов, в том числе интегральных уравнений. Конспект лекций поможет студентам освоить основы соответствующих расчетов.

Конспект будет полезен при выполнении практических работ.

1. Линейные интегральные уравнения

2. Общий вид интегрального уравнения Фредгольма 1-го рода 5

3. Интегральные уравнения Вольтера 6

4. Виды нелинейных интегральных уравнений 6

5. Методы Фредгольма 8

6. Резольвента Фредгольма 9

7. Интегральные уравнения с вырожденным ядром 13

8. Использование вырожденных ядер для приблизительного 15

решения интегральных уравнений

9. Принцип последовательных приближений («сжатых отображений») 16

10. Применение метода приближенных решений для решения

интегральных уравнений Вольтерра 2-го рода 17

11. Применение метода приближенных решений для решения

некоторых видов нелинейных интегральных уравнений 17

12. Решение системы интегральных уравнений 17

13. Использование линейных операторов 19

14. Интегральные уравнения с ядром, имеющим слабую особенность 22

15. Уравнение типа свертки 24

16. Применение метода свертки для решения

интегральных уравнений 1-го рода 25

17. Решение интегро-дифференциальных уравнений типа свертки 26

18. Применение преобразования Меллина для решения

интегральных уравнений 28

19. Симметричные интегральные уравнения 29

20. Интегральные уравнения, приводящиеся к симметричным 32

21. Использование метода последовательных приближений для

решения некоторых интегральных уравнений Фредгольма

первого рода 34

22. Метод с использованием производящей функции 34

23. Нефредгольмовы интегральные уравнения 35

24. Применение преобразования Гильберта для решения

интегральных уравнений 36

25. Нелинейные интегральные уравнения 37

26. Применение вырожденных ядер для решения уравнений

Гаммерштейна 38

Целями освоения дисциплины «Математический аппарат теории сигналов и систем » являются:

1. Подготовка в области знания основных средств расчета современных радиотехнических систем и создания радиоэлектронной аппаратуры.

2. Формирование практических навыков работы с научными методами расчета и проектирования.

3. Подготовка в области радиотехники для разных сфер профессиональной деятельности специалиста.

Дисциплина » Математический аппарат теории сигналов и систем » относится к общенаучному циклу дисциплин

Взаимосвязь с другими дисциплинами:

Курс «Математический аппарат теории сигналов и систем » основывается на знании предметов бакалаврского образования, таких, как «История радиотехники», «Математика», «Физика», «Прикладная математика в радиоэлектронике» и магистерского образования, такого, как «История и методология науки и техники (применительно к радиотехнике)», и др., логически и содержательно-методически связан с ними.

Полученные знания могут быть использованы при изучении таких предметов, как «Статистическая теория связи», «Современные радиоэлектронные системы», подготовке магистерской диссертации, а также в процессе разработки и проектирования радиоаппаратуры.

Конспект лекций призван облегчить студентам изучение теоретического материала дисциплины.

Интегральное уравнение — уравнение, где неизвестная функция входит под знак интеграла.

1. Линейные интегральные уравнения

— известная функция.

— неизвестная искомая функция.

Интегральное уравнение называется линейным, если неизвестная функция, входящая в него, линейна.

Классическая запись линейного интегрального уравнения:

,

где — параметр, задающий семейство решений интегральных уравнений;

— ядро интегрального уравнения.

Функция существует в пределах .

Функция существует в пределах

.

2. Общий вид интегрального уравнения Фредгольма 1-го рода

— интегральное уравнение Фредгольма 1-го рода.

— интегральное уравнение Фредгольма 2-го рода.

а и b могут быть конечными или бесконечными.


источники:

http://www.sites.google.com/site/fet5486/polzovateli/filatov-d-n/integralnoe-uravnenie

http://pandia.ru/text/80/170/54388.php