Интересные факты и к ним уравнения

30 интересных и удивительных фактов о математике

Такие слова, как формула, уравнение и вычисление, кажутся скучными для тех, кто ненавидит математику как предмет, в то время как это весело для тех, кто проявляет большой интерес к решению уравнений/задач.

ВсеЗнаешь.ру собрал некоторые интересные и удивительные факты о математике.

Интересные факты о математике

Выемки (порезы или углубления) на костях животных доказывают, что люди занимались математикой примерно с 30 000 лет до нашей эры.

Удивительным фактом является то, что понятие (ноль) было введено в Индии еще в 3 веке до нашей эры. Оно было передано арабским ученым, а также китайцам в 9 веке нашей эры. Европейские ученые осознали важность нуля в 10 век нашей эры.

Удивительно, но арабские цифры на самом деле не арабские; они были изобретены в Индии. Арьябхата — отец индийско-арабской системы счисления, ставшей сегодня универсальной.

Удивительный факт заключается в том, что римские цифры не имеют нулевого (0) представления.

2200 лет назад Эратосфен вычислил окружность Земли с помощью математики, ни разу не покидая Египта. Он был удивительно точен.

Удивительно, но название популярной поисковой системы «Google» произошло от неправильного написания слова «googol», которое является очень большим числом для описания единицы, за которой следуют 100 нулей. Впервые его использовал 9-летний Милтон Сиротта в 1940 году.

Знак = («знак равенства») изобрел валлийский математик Роберт Рекорд, которому надоело писать «равно» в своих уравнениях. Впервые он использовал его в 1557 году.

Греческого математика Евклида часто называют «отцом геометрии» за его революционные идеи и влиятельный учебник под названием «Элементы», который он написал примерно в 300 году до нашей эры.

Алгебра, исчисление и тригонометрия — все это удивительные изобретения родом из Индии.

Самое большое из когда-либо найденных простых чисел состоит из 24 862 048 десятичных цифр.

Удивительно, но древние вавилоняне считали по основанию 60 вместо 10. Вот почему в минуте 60 секунд, а в окружности 360 градусов.

Слово «сотня» на самом деле происходит от древнескандинавского слова «сотня», которое на самом деле означает 120, а не 100.

Символы, используемые для сложения (+) и вычитания (), существуют уже тысячи лет.

Самое популярное двузначное число — 13.

В 1642 году французский математик Блез Паскаль изобрел механический калькулятор.

В 1900 году все мировые математические знания можно было изложить примерно в 80 книгах. Удивительный факт, что сегодня они заполнили бы более 100 000 книг.

Совершенно поразительно, что кубик Рубика имеет 43 252 003 274 489 856 000 различных конфигураций и всего лишь одно решение!

Удивительно, но противоположные стороны игральной кости всегда дают в сумме семь.

Если две величины имеют отношение примерно 1,618 говорят, что они находятся в золотом сечении. Это соотношение использовалось на протяжении всей истории для создания эстетически приятных произведений искусства.

Доведение числа Пи до 39 знаков позволяет измерить окружность наблюдаемой Вселенной с точностью до ширины одного атома водорода.

Среди всех фигур с одинаковым периметром наибольшую площадь имеет круг. Среди всех фигур одинаковой площади круг имеет наименьший периметр.

«Тетрафобия» — иррациональный страх перед числом 4 в большей части Восточной Азии. В 1995 году в Тайбэе гражданам разрешили убрать «4» из номеров улиц, потому что по-китайски это звучало как «смерть». Удивительно, что во многих китайских больницах нет 4-го этажа.

Последовательность Фибоначчи — это числа, в которых каждое последующее число является суммой двух предыдущих: т. е. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711 и т. д.

Числовой палиндром — это число, которое одинаково читается вперед и назад, например, 13431.

Парадокс дня рождения гласит, что в группе всего из 23 человек существует 50%-ная вероятность того, что по крайней мере у двоих день рождения будет совпадать. Это кажется удивительным, но оказалось абсолютно правильным.

Исследование показало, что учащиеся, которые жуют жвачку, имеют более высокие результаты тестов по математике, чем те, кто этого не делает.

По словам математиков, существует 177 147 способов завязать галстук.

Премия тысячелетия — это награда в размере 1 миллиона долларов США, присуждаемая тому, кто решит любую 1 из 7 математических «задач тысячелетия». По состоянию на начало 2022 года только одна из семи задач тысячелетия (гипотеза Пуанкаре) решена

Философ Рене Декарт наиболее известен высказыванием «Я мыслю, следовательно, существую», но он также разработал систему координат XY.

Во многих израильских школах алгебра преподается без использования символа «+», так как он выглядит как христианский крест. Вместо этого они используют перевернутую букву «Т».

Интересные факты и к ним уравнения

Кто хочет ограничиваться настоящим

без знания прошлого,

тот никогда его не поймет.

Важность умения решать квадратные уравнения в очередной раз доказывает то, что такие уравнения умели решать еще в древности. Квадратные уравнения умели решать около 2000 лет до н. э . Решение квадратных уравнений находило применение в древности. Но как это делалось, если в то время не существовала символическая алгебра? Постараемся с этими фактами ознакомиться.

Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза. В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно в своей работе я разобрал каждый из них Так как квадратные уравнения с тех времен активно развивались, можно сделать вывод, что их применение значительно увеличилось. Как же теперь применяются квадратные уравнения? Применяются квадратные уравнения во многих расчетах, сооружениях, спорте, а также и вокруг нас. Сейчас ученые выяснили, что траекторию движения планет можно найти с помощью квадратного уравнения. Проходя эту тему на уроке, мы мало задумываемся о практическом применении квадратных уравнений. Поэтому мы считаем, что квадратные уравнения нигде не используются, но как выяснилось это не так. Также подобные расчеты нужны в метании. Дальность полета объекта зависит от квадратного уравнения. При разбеге прыгуна в высоту для максимально четкого попадания на планку отталкивания и высокого полета, используют расчеты, связанные с параболой.

Интересные факты развития квадратных уравнений.

1. Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

2. Как составлял и решал Диофант квадратные уравнения

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача : «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 — х. Разность между ними 2х.

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

3. Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В уравнении (1) коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача: Обезьянок резвых стая, всласть поевши, развлекалась. Их в квадрате часть восьмая на поляне забавлялась. А 12 по лианам. стали прыгать, повисая. Сколько было обезьянок, Ты скажи мне, в этой стае?

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Соответствующее задаче уравнение:

Бхаскара пишет под видом:

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

х 2 — 64х + 32 2 = -768 + 1024,

4. Квадратные уравнения в Европе XIII — XVII вв

Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:

при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

5. О теореме Виета

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D, умноженное на A — A 2 , равно BD, то A равно В и равно D».

Чтобы понять Виета, следует вспомнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же В,D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

х 2 — (а + b)х + аb = 0,

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

Способы решения квадратных уравнений.

В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно в своей работе я разобрал каждый из них.

1 способ: Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х — 24 = 0. Разложим левую часть на множители:

х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = — 12. Это означает, что число 2 и — 12 являются корнями уравнения х 2 + 10х — 24 = 0. Ответ: х=2 и х= -12.

2 способ: Метод выделения полного квадрата.

Решим уравнение х 2 + 6х — 7 = 0. Выделим в левой части полный квадрат.

Для этого запишем выражение х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2• х • 3.

В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х на 3 Поэтому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2• х • 3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2 . Имеем:

х 2 + 6х — 7 = х 2 + 2• х • 3 + 3 2 — 3 2 — 7 = (х + 3) 2 — 9 — 7 = (х + 3) 2 — 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 — 16 =0, (х + 3) 2 = 16.

Следовательно, х + 3 — 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7. Ответ: х1 = 1, х2 = -7

3 способ: Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах 2 + bх + с = 0, а ≠ 0

на 4а последовательно получим:

4а 2 х 2 + 4аbх + 4ас = 0,

((2 ах ) 2 + 2 ах • b + b 2 ) — b 2 + 4ac = 0,

(2ax + b) 2 = b 2 — 4ac,

2ax + b = ± √ b 2 — 4ac,

2ax = — b ± √ b 2 — 4ac,

4 способ: Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

х 2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид:

Отсюда можно сделать следующие выводы (по коэффициентам p и с) можно предсказать знаки корней).

а) Если сводный член с приведенного уравнения (1) положителен, то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p.

x 2 – 3x + 2 = 0; x1 = 2 и x2 = 1,

x 2 + 8x + 7 = 0; x1 = — 7 и x2 = — 1,

б) Если свободный член с приведенного уравнения (1) отрицателен , то уравнение имеет два различных по знаку корня.

5 способ: Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение

ах 2 + bх + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнение

а 2 х 2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению

у 2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета.

Окончательно получаем х1 = у1/а и х1 = у2/а. При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у 2 – 11у + 30 = 0.

Согласно теореме Виета

6 способ: Свойства коэффициентов квадратного уравнения.

→ Пусть дано квадратное уравнение ах 2 + bх + с = 0, где а ≠ 0.

1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

x 2 + b/a • x + c/a = 0.

Согласно теореме Виета

П о условию а – b + с = 0, откуда b = а + с. Таким образом,

т.е. х1 = -1 и х2 = c/a, что и требовалось доказать.

Решим уравнение 345х 2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

2)Решим уравнение 132х 2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

→ Если второй коэффициент b = 2k – четное число, то формулу корней

Решим уравнение 3х 2 — 14х + 16 = 0.

Решение. Имеем: а = 3, b = — 14, с = 16, k = — 7;

D = k 2 – ac = (- 7) 2 – 3 • 16 = 49 – 48 = 1, D 0, два различных корня;

7 способ: Графическое решение квадратного уравнения.

Если в уравнении х 2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х 2 = — px — q.

Построим графики зависимости у = х 2 и у = — px — q.

График первой зависимости — парабола, проходящая через начало координат. График второй зависимости — прямая (рис.1). Возможны следующие случаи:

— прямая и парабола могут пересекаться в двух точках,

абсциссы точек пересечения являются корнями квад- ратного уравнения;

— прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

1) Решим графически уравнение х 2 — 3х — 4 = 0(рис. 2).

Решение. Запишем уравнение в виде х 2 = 3х + 4.

Построим параболу у = х 2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Прямая и парабола пересекаются в двух точках А и В с абсциссами х1 = — 1 и х2 = 4. Ответ: х1 = — 1; х2 = 4.

2) Решим графически уравнение (рис. 3) х 2 — 2х + 1 = 0.

Решение. Запишем уравнение в виде х 2 = 2х — 1.

Построим параболу у = х 2 и прямую у = 2х — 1.

Прямую у = 2х — 1 построим по двум точкам М (0; — 1)

и N(1/2; 0). Прямая и парабола пересекаются в точке А с

абсциссой х = 1. Ответ: х = 1.

3) Решим графически уравнение х 2 — 2х + 5 = 0 (рис. 4).

Решение. Запишем уравнение в виде х 2 = 5х — 5. Построим параболу у = х 2 и прямую у = 2х — 5. Прямую у = 2х — 5 построим по двум точкам М(0; — 5) и N(2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.

Ответ. Уравнение х 2 — 2х + 5 = 0 корней не имеет.

8 способ: Решение квадратных уравнений с помощью циркуля и линейки.

Гр афический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точности получаемых результатов невелика.

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис. 5).

Допустим, что искомая окружность пересекает ось

абсцисс в точках В(х1; 0 ) и D (х2; 0), где х1 и х2 — корни уравнения ах 2 + bх + с = 0, и проходит через точки

А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х1х2/ 1 = c/a.

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS SВ, или R a + c/2a), окружность пересекает ось Ох в двух точках (рис. 6,а) В(х1; 0) и D(х2; 0), где х1 и х2 — корни квадратного уравнения ах 2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра

окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

Реш им уравнение х 2 — 2х — 3 = 0 (рис. 7).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

9 способ: Решение квадратных уравнений с помощью номограммы.

Это старый и незаслуженно забытый способ решения квадратных уравнений,

помещенный на с. 83 (см. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990).

Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена

по формулам (рис.11):

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0,

причем буква z означает метку любой точки криволинейной шкалы.

1) Для уравнения z 2 — 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z2 = 1,0 (рис.12).

2) Решим с помощью номограммы уравнение

Разделим коэффициенты этого уравнения на 2,

Номограмма дает корни z1 = 4 и z2 = 0,5.

3) Для уравнения

z 2 — 25z + 66 = 0

коэффициенты p и q выходят за пределы шкалы, выполним подстановку

получим уравнение t 2 — 5t + 2,64 = 0, которое решаем посредством номограммы и получим t1 = 0,6 и t2 = 4,4, откуда z1 = 5t1 = 3,0 и z2 = 5t2 = 22,0.

10 способ: Геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» аль — Хорезми.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39» (рис.15).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата, сторона каждого из них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

Решение представлено на рис. 16, где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же у равнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = — 8 (рис.16).

3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

Преобразуя уравнение, получаем у 2 — 6у = 16.

На рис. 17 находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± √25, или у — 3 = ± 5, где у1= 8 и у2 = — 2.

Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств.

Однако, значение квадратных уравнений заключается не только в изяществе и краткости решения задач, хотя и это весьма существенно. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.

Хочется отметить и то, что излагаемая тема в этой работе еще мало изучена вообще, просто ею не занимаются, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней.

Здесь мы остановились на вопросе решения квадратных уравнений, а что, если существуют и другие способы их решения?! Опять находить красивые закономерности, какие-то факты, уточнения, делать обобщения, открывать все новое и новое. Но это вопросы уже следующих работ.

Подводя итоги, можно сделать вывод: квадратные уравнения играют огромную роль в развитии математики. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза. Эти знания могут пригодиться нам на протяжении всей жизни.

Так как эти методы решения квадратных уравнений просты в применении, то они, безусловно, должно заинтересовать увлекающихся математикой кадетов Наша работа дает возможность по-другому посмотреть на те задачи, которые ставит перед нами математика.

Список используемой литературы и источников интернета:

1.Задачник по алгебре и элементарным функциям. Учебное пособие для средних специальных учебных заведений. Кружепов А.К., Рубанов А.Т. — М., высшая школа, 1969.

2.Квадратичные функции, уравнения и неравенства. Пособие для учителя. Окунев А.К. — М., Просвещение, 1972.

3.Решение квадратного уравнения с помощью циркуля и линейки. Пресман А.А. — М., Квант, № 4/72. С. 34.

4.Сборник вопросов и задач по математике. Изд. — 4-е, дополн. Соломник В.С., Милов П.И. — М., Высшая школа, 1973.

5.Сборник задач по алгебре и элементарным функциям. Пособие для учителя. Худобин А.И. Изд. 2-е. — М., Просвещение, 1970.

Эти загадочные уравнения

Окружная научная конференция учащихся

Эти загадочные уравнения

Наумов Виктор, ученик 6 класса

ГБОУ СОШ ж.-д. ст. Погрузная

ГБОУ СОШ ж.-д. ст. Погрузная

с. Красный Яр, 2013 г.

· Введение. Актуальность проблемы изучения способов решения

Глава 1. Исторические сведения…………………………………….4-8

Глава 2. Эти загадочные уравнения………………………………..8-15

2.1. Что мне было известно про уравнение………………………..8-9

2.2. Решение простейших уравнений …………………..……

2.3. Что я нового узнал об уравнениях из школьных учебников……………………………………………………………11-15

Глава 3. Что я нового узнал об уравнении из дополнительной

3.1. Тайное становится явным (исследование)………….……… 15-18

3.2. Способы решения уравнений……………………….……….. 18-20

а) Решение уравнений с помощью правила нахождения неизвестной компоненты…………………………………………………….…………..18

б) Решение уравнений методом весов…………………………..18

в) Решение уравнений методом проб и ошибок………………..19

г) Решением уравнений методом перебора……………. 19

3.3 Математические фокусы…………………………………. 21-23

· Список использованной литературы……………………. 25

· Приложения. Задания для моих одноклассников

Введение. Актуальность проблемы

Уравнение – одно из важнейших понятий математики. В большинстве практических и научных задач, где какую-то величину нельзя непосредственно измерить или вычислить по готовой формуле, удается составить выражение, которым оно удовлетворяет. Так получают уравнение для определения неизвестной величины. Кто и когда придумал уравнения? Кто ввёл неизвестные величины? Как решаются уравнения? Эти проблемные вопросы, думаю, интересны многим, в том числе и мне. Я высказал гипотезу, что существуют какие-то определенные способы решения уравнений и поставил перед собой цель:

• изучить способы решения уравнений

• углубить математические знания по этой теме

• расширить представления о математике как о языке описания окружающего мира

• изучить литературу и систематизировать материал по данной теме

• исследовать свойства преобразования уравнений

• выявить основные доступные способы решения уравнений

• выработать навыки поисково-исследовательской работы

• систематизация изученного материала

• классификация уравнений по способам их решения

Объект исследования: Уравнения

Предмет исследования: Способы решения уравнений

Слова уравнение и равенство имеют один и тот же корень. Да, и на самом деле, уравнение – это равенство, содержащее неизвестную величину, значение которой нужно найти.

Уравнения в школьном курсе математики занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники.

В начальной школе я научился решать самые простые уравнения, в пятом и шестом классах мы уже решали более сложные уравнения, а в старших классах я научусь решать разные виды уравнений. Существует целая наука алгебра, которая изучает различные виды уравнений и способы их решения. С алгеброй, как учебным предметом, мне предстоит встретиться только в седьмом классе.

Но мне не захотелось ждать седьмого класса. Из дополнительной литературы я решил узнать новое, интересное и загадочное об уравнениях. Поэтому тема моей работы «Эти загадочные уравнения».

Глава 1.Исторические сведения

Кто и когда придумал первое уравнение?

Задачи, которые довольно просто мы сегодня можем решить при помощи уравнений, решали хорошо обученные науке мудрецы, чиновники и жрецы ещё в Древнем Вавилоне и Древнем Египте, Древнем Китае, Древней Индии и Древней Греции. Дошедшие до нас источники свидетельствуют, что древние учёные владели какими-то общими приёмами решения задач с неизвестными. Однако ни в одном папирусе, ни на одной глиняной табличке не дано описание приёмов. Авторы лишь изредка снабжают выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты верно нашёл!» В те времена не было ещё общепринятых теперь обозначений неизвестных буквами, а действий – знаками. Древние египтяне для удобства рассуждений придумали специальное слово, обозначающее неизвестное число, но так как у них не было ещё знаков равенства и знаков действий, то записывать уравнения они, конечно, не умели. Уравнения записывались словами.

Но и в «словесной форме» уравнения существенно облегчали решение задач.

Первым придумал обозначение для

неизвестных греческий математик

Диофант, живший в III веке.

Посредством уравнений, теорем

Он уйму всяких разрешал проблем.

И засуху предсказывал, и ливни –

Поистине его познанья дивны.

Его книга «Арифметика» содержала большое количество интересных задач, её изучали математики всех поколений. Книга сохранилась до наших дней и переведена на русский язык.

Во времена Диофанта языком науки был греческий. Но греки ещё не знали цифр и обозначали числа при помощи букв своего алфавита. Первые девять букв: обозначали числа от 1 до 9; следующие девять:обозначали числа от 10 до 90; наконец, следующие девять: обозначали числа от 100 до 900. чтобы не ошибиться и не принять число за слово, над буквами, обозначающими число, ставилась чёрточка. Букв в алфавите было 28, одна из них была особой – она обозначалась (сигма концевая), ставилась только в конце слов и числового значения не имела. Вот ею-то Диофант и стал обозначать неизвестную величину, так же как мы обычно обозначаем её буквой х.

Придумав это, Диофант стал двигаться дальше. И вместо слова «получится» или «равняется» стал писать — две первые буквы слова («исос» — равный). Диофант придумал знак и для вычитания – им служила буква (пси), только перевёрнутая. А без знака сложения Диофант обходился довольно просто – слагаемые записывал рядом друг с другом. Придумал Диофант и два основных приёма решения уравнений – перенос неизвестных в одну сторону уравнения и приведение подобных членов. С этими приёмами я познакомлюсь при изучении математики в этом году.

Первым руководством по решению уравнений, получившим широкую известность, стал труд арабского учёного IX века Мухаммеда Бен Мус аль -Хорезми. Об аль – Хорезми известно лишь, что он написал ряд трудов по астрономии и географии. И самое главное – он написал сочинение, которое по-арабски называется «Китаб аль-джебр валь-мукабала» (Книга о восстановлении и противопоставлении). Это сочинение оказало большое влияние на развитие математики в Европе, а само слово «аль-джебр», входившее в название книги, постепенно стало названием науки – алгебра. Алгебра – часть математики, которая изучает общие свойства действий над различными величинами и решение уравнений, связанных с этими действиями.

Аль-Хорезми одним из первых стал обращаться с уравнениями так, как торговец обращается с рычажными весами. Пусть, например, имеется равенство 5х – 16 = 20 – 4х. Считая, что оно задаёт равновесие некоторых грузов на чашах весов, торговец вправе заключить, что равенство не изменится, если он на обе чаши добавит одно и то же количество:

было 5х – 16 = 20 – 4х,

стало 5х = 36 – 4х.

После этой операции прибавления одинаковых количеств число 16 исчезло из левой части исходного равенства, зато со знаком плюс оно возникло (восстановилось) в правой части. Точно так же на обе чаши весов можно добавить одно и то же количество 4х:

было 5х = 36 – 4х.,

Опять из правой части равенства выражение 4х пропало, а в левой части оно восстановилось со знаком плюс. Из полученного простого равенства 9х = 36 уже легко вычислить, что х = 4.

Взгляд на уравнение как на равенство грузов на весах, на обеих чашах которых можно производить одинаковые преобразования, оказался очень плодотворным. Равные количества можно не только прибавлять к обеим частям уравнения или вычитать из них. Равенство не нарушится и тогда, когда обе части умножаются или делятся на одно и то же число (если оно не нуль). Главный принцип: если над равными количествами произвести одинаковые действия, то в результате снова получатся равные количества – стал своеобразной «волшебной палочкой», которую обнаружили вдумчивые читатели руководства аль-Хорезми.

Новый великий прорыв в решении уравнений связан с именем французского учёного XVI века Франсуа Виета. Он первым из математиков ввёл буквенные обозначения для неизвестных величин. А традицией обозначать неизвестные величины последними буквами латинского алфавита (х, у или z) мы обязаны соотечественнику Виета – Рене Декарту.

Таким образом, решению уравнений уделялось всегда большое внимание. В древности считалось, что уравнения связаны с тайной, которую нужно разгадать, найдя значение неизвестной величины. Людей, которые могли решать уравнения, считали мудрецами, посвященными в эту тайну, так как уравнения были связаны с решением житейских проблем.

Уравнение – это золотой ключ, открывающий все математические сезамы» С. Коваль

Сезам – заклинание в арабской сказке, силой которого раскрывалась тайная сокровищница.

Глава 2. Эти загадочные уравнения.

2.1.Что мне было известно про уравнение

В учебнике «Математика – 4, часть 2» в разделе «Справочный материал» на странице 92 про уравнение можно прочитать следующее:

« Уравнение – это равенство, содержащее неизвестное число, которое надо найти. Неизвестное число в таком равенстве обозначают латинской буквой (например, х, а, b и др.). Решить уравнение – значит найти такое значение буквы, чтобы равенство стало верным. Например: 15 + х = 18 – уравнение. х = 3 – решение уравнения, так как 15 + 3 = 18 – верное равенство».

В учебнике Виленкина «Математика – 5», в п.10 на страницах 58-59 мы прочтём про уравнение почти то же самое.

Задача. На левой чашке весов лежит арбуз и гиря в 2 кг, а на правой чашке – гиря в5 кг. Весы находятся в равновесии. Чему равна масса арбуза?

Решение. Обозначим неизвестную массу арбуза буквой х. Так как весы находятся в равновесии, то должно выполняться равенство х + 2 = 5.

Нужно найти такое значение х, при котором выполняется это равенство. По смыслу вычитания таким значением будет разность чисел 5 и 2, то есть 3. Значит, масса арбуза равна 3 кг. Пишут: х = 3.

Если в равенство входит буква, то равенство может быть верным при одних значениях этой буквы и неверным при других её значениях.

Например, равенство х + 2 = 5 верно при х = 3 и неверно при х = 4.

Уравнением называют равенство, содержащее букву, значение которой надо найти. Значение буквы, при котором из уравнения получается верное числовое равенство, называют корнем уравнения. (Например, корнем первого уравнения х + 2 = 5 является число3).

Решить уравнение – значит найти все его корни (или убедиться, что это уравнение не имеет ни одного корня).

Таким образом, уравнение характеризуется двумя свойствами, которые легко определить на глаз, по внешнему виду: 1) уравнение – это равенство; 2) в этом равенстве есть буква.

2.2. Решение простейших уравнений

Пример 1. Решим уравнение х + 37 = 85.

Решение. По смыслу вычитания неизвестное слагаемое равно разности суммы и другого слагаемого. Поэтому х = 85 – 37 , то есть х = 48.Число 48 является корнем уравнения х + 37 = 85, потому что 48 + 37 = 85.

Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

Пример 2. Решим уравнение у – 94 = 18.

Решение. По смыслу вычитания у является суммой чисел 18 и 94. Значит, у = 18 + 94, то есть у = 112.Число 112 является корнем уравнения у – 94 = 18, так как верно равенство у – 94 = 18.

Чтобы найти неизвестное уменьшаемое, надо сложить вычитаемое и разность.

Пример 3. Решим уравнение 91 – z = 36.

Решение. По смыслу вычитания число 91 является суммой z и 36 , то есть z + 36 = 91. Из этого уравнения находим неизвестное слагаемое: z = 91 – 36, то есть z = 55.Число 55 является корнем уравнения 91 – z = 36, так как верно равенство 91 – 55 = 36.

Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Пример 4. Решим уравнение 35х = 175.

Решение. По смыслу деления имеем: х = 175 : 35, то есть х = 5. Число 5 является корнем уравнения 35х = 175, так как верно равенство 355 = 175.

Чтобы найти неизвестный множитель, надо произведение разделить на другой множитель.

Пример 5. Решим уравнение у : 8 = 16.

Решение. По смыслу деления у – произведение множителей 8 и 16. Значит, у = 168, то есть у = 128. Число 128 является корнем уравнения у : 8 = 16, так как верно равенство 128 : 8 = 16.

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

Пример 6. Решим уравнение 252 : z = 21.

Решение. По смыслу деления число 252 – произведение множителей 21 и z, то есть 21z = 252. Применяя правило нахождения неизвестного множителя, находим: z = 252 : 21, то есть z = 12. Число 12 является корнем уравнения 252 : z = 21, так как верно равенство 252 : 12 = 21.

Чтобы найти неизвестный делитель, надо делимое разделить на частное.

Таким образом, при решении этих уравнений я использовал правила нахождения неизвестных компонентов арифметических действий (слагаемого, уменьшаемого, вычитаемого, множителя, делимого и делителя).

Компонент — слово латинского происхождения, на русский язык переводится как составляющая часть, элемент чего-либо. По этим правилам мы решаем уравнения, начиная со второго класса.

2.3.Что я узнал об уравнениях из школьных учебников

При решении уравнений кроме способа нахождения неизвестного компонента, мы использовали еще второй способ, при котором упрощали выражение, стоящее в левой части уравнения, используя свойства сложения, вычитания и умножения.

Рассмотрю несколько заданий из учебника.

№ 000. Решите двумя способами уравнение:

а) (х + 98) + 14 = 169; б) (35 + у) – 15 = 31 .

Решу первое уравнение двумя способами:

1) сначала найду неизвестное слагаемое х + 98:

а потом найду слагаемое х: х = 155 – 98,

2) сначала упростим выражение, стоящее в левой части уравнения, используя сочетательное свойство сложения

а затем найду неизвестное слагаемое х:

Решу второе уравнение двумя способами:

1) сначала найду неизвестное уменьшаемое 35 + у:

а потом найду слагаемое у: у = 46 – 35,

2) сначала упростим выражение, стоящее в левой части уравнения, используя свойство вычитания: (35 + у) – 15 = 31,

а затем найду неизвестное слагаемое у:

№ 000. Решите уравнение:

а) 3х + 5х + 96 = 1568;

Используя распределительное свойство умножения относительно сложения, упрощу левую часть первого и третьего уравнения, а распределительное свойство умножения относительно вычитания для второго и получу более простые уравнения. а) 8х + 96 = 1568;

б) 208z – 1843 = 11469;

После этого найду неизвестные компоненты: слагаемое, вычитаемое и множитель а) 8х + 96 = 1568,

х = 144. Ответ: 144.

б) 208z – 1843 = 11469,

208z = 11469 + 1843,

у = 167. Ответ: 167.

Еще в пятом классе я научился решать задачи с помощью уравнений.

Решу задачи из нашего учебника.

№ 000. Для школы купили 220 столов и стульев, причем стульев – в 9 раз больше, чем столов. Сколько столов и сколько стульев купили?

Решение. Пусть столов купили х штук, тогда стульев – 9х штук. Всего купили (х + 9х) штук, или 220. Получил уравнение: х + 9х = 220. Решу его. х + 9х = 220,

х = 22. Итак, купили 22 стола, тогда стульев – 229 = 198 .

№ 000(1). Первое число в 2,4 раза больше третьего, а второе число на 0,6 больше третьего числа. Найдите эти три числа, если их среднее арифметическое равно 2, 4.

Решение. Пусть третье число равно х, тогда 2,4х – первое число, а второе х + 0,6 . Среднее арифметическое этих чисел (2,4х + х + 0,6 + х) : 3 по условию задачи равно 2,4. Составлю уравнение и решу его.

(2,4х + х + 0,6 + х) : 3 = 2,4,

4,4х + 0,6 = 2,43,

1,5 –третье число, тогда 1,5 + 0,6 = 2,1 – второе число и 1,52,4 = 3,6 – первое число. Ответ: 3,6; 2,1 и 1,5.

Я провел маленькое исследование и убедился, что в учебнике «Математика – 5» достаточно много заданий, связанных с решением уравнений. Это задания первого вида: «Решите уравнение», «Угадайте корни уравнения» или «Найдите корни уравнения» и задания второго вида: «Решите задачу с помощью уравнения», «Придумайте задачу по уравнению», «Решите задачу».

372, 374, 375, 376, 379, 380, 395, 396, 439, 442, 445, 446, 462, 464, 482, 483, 485, 487, 490, 491, 496, 504, 505, 523, 524, 525 , 551, 568, 569, 570, 574, 576, 592, 593, 614, 615, 635, 639, 647, 660, 707, 727,

878, 1018, 1022, 1036, 1042, 1058, 1107, 1127, 1165, 1210, 1236, 1238, 1251, 1268, 1326, 1329, 1348, 1358, 1362, 1373, 1379, 1389, 1441, 1459, 1489, 1517, 1752, 1817.

373, 377, 397, 410, 440, 447, 484, 486, 489, 512, 526, 571,

572, 577, 578,579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 594, 602, 603, 607, 618, 619, 621, 622, 623, 624, 641, 643, 665, 669, 704, 705, 706, 726, 777, 837, 870, 871, 997, 1126, 1081, 1073, 1105,

1140, 1170, 1253, 1328, 1349, 1350, 1351, 1430,1460, 1461, 1462, 1463, 1490, 1491, 1558, 1559, 15 97, 1647, 1669, 1755, 1756, 1757, 1758, 1760, 1838, 1839, 1840.

То есть, 155 номеров всех заданий учебника, а их 1849, связаны с решением уравнений, то есть = 0, 083 829…. 8,4%. Но если учесть, что в данном учебнике первое задание, связанное с решением уравнения начинается с номера 372, то 1849 – 371 = 1478 и = 0, 10 487… 10%.

Теперь можно сделать вывод, что после изучения темы «Уравнение», каждое 10-е задание учебника требует умений решать уравнения. И это еще раз подчеркивает важность изучения темы «Уравнение»

Глава 3. Что я узнал об уравнении из дополнительной литературы.

3.1.Тайное становится явным (исследование)

Представьте, что в очень лёгком — практиче­ски невесомом — кошельке содержится какое-то количество монет одинакового достоинства. Как узнать, сколько монет в кошельке, не за­глядывая внутрь? Есть очень простой способ: положим кошелёк на одну чашу рычажных ве­сов и уравновесим его монетками на другой чаше. Сколько монет для этого потре­буется — столько же их и в кошельке.

В кошельке семь монет.

Весы — испытанный измерительный инструмент продавцов, химиков и аптекарей приходит на помощь и в чуть более сложном случае.

На левой чаше находящихся в равновесии весов лежат кошелёк с неизвестным числом монет и ещё 5 монет рядом с ним, а на правой чаше — 15 точно таких же монеток. Для того чтобы узнать, сколько монет в кошельке, снимем по 5 монет с обеих чаш — равновесие при этом не нарушится.

Следовательно, внутри кошелька 10 монет

Взгляд на уравнение как на равенство грузов на весах, на обеих чашах которых можно производить одинаковые преобразования, оказался очень плодотворным. В своём сочинении об уравнениях арабский учёный аль – Хорезми замечает, что равные количества можно не только прибавлять к обеим частям уравнения или вычитать из них. Равенство не нарушится и тогда, когда обе части умножаются или делятся на одно и то же число, если оно не равно нулю. Главный принцип: если над равными количествами произвести одинаковые действия, то в результате снова получатся равные количества – стал своеобразной «волшебной палочкой», которую обнаружили вдумчивые читатели руководства аль – Хорезми. Попробую и я воспользоваться этой палочкой, и насколько мне позволяют знания, исследовать и доказать, что аль – Хорезми был прав. Рассмотрю это на простом уравнении.

Проведу исследования и узнаю, на самом ли деле значение х = 19, останется везде одинаковым.

1) Прибавлю к обеим частям уравнения число 12, получу новое уравнение 2х + 28 + 12 = 66 + 12,

воспользуюсь правилом, что два соседних слагаемых можно заменять их суммой, тогда 2х + 40 = 78,

2) Вычту из обеих частей уравнения 16,

чтобы найти неизвестное уменьшаемое (2х + 28) нужно к разности прибавить вычитаемое 2х + 28 = 50 + 16,

1) Умножу обе части уравнения на 3,

(2х + 28) 3= 663,

воспользуюсь правилом, что при умножении суммы на число можно на него умножить каждое слагаемое в отдельности и полученные результаты сложить. 2х 3 + 28 3 = 198, применю правило, что от перестановки множителей произведение не изменяется, и получу 3 2х + 84 = 198,

4) Разделю обе части уравнения на 2,

(2х + 28) : 2 = 66 : 2,

Чтобы разделить сумму на число, можно разделить каждое слагаемое и полученные результаты сложить 2х : 2 + 28 :2 = 66 : 2,

Вывод: значение корня не изменится, если :

к обеим частям уравнения прибавить или отнять одно и то же число;

— обе части уравнения умножить или разделить на число, неравное нулю.

Эти правила применяются для решения уравнений методом весов.

3.2. Способы решения уравнений.

Из дополнительной литературы я узнал о некоторых способах решения уравнений, с которыми я разобрался, и они оказались мне понятными.

а) Решение уравнений с помощью правила нахождения неизвестного компонента. Решение уравнений этим методом я подробно рассмотрел в главе 2.

б) Решение уравнений методом весов. Решение уравнений методом весов я рассматривал в главе «Исторические сведения».

Решу уравнения таким методом.

а) 4х – 9 = 2х + 11, в) 8х – 10 = 5х + 8,

из обеих частей уравнения из обеих частей уравнения

отнимем по 2х и прибавим 9, отнимем по 5х и прибавим 10,

получим уравнение получим уравнение

х = 20 : 2, х = 18 : 3,

Проверка. 4 10 – 9 = 2 10 + 11, Проверка. 8 6 – 10 = 56 + 8,

40 – 9 = 20 + 11, 48 – 10 = 30 + 8,

Ответ: х = 10. Ответ: х = 6.

Уравнения такого вида мы научимся решать в конце 6 класса, используя правила преобразования выражений, а пока их можно решать методом весов.

в) Решение уравнений методом проб и ошибок

а) Решите уравнение х (х + 3) = 70.

Никакие известные нам правила не помогают найти решение этого уравнения. Попробуем тогда подобрать решение «экспериментально», так называемым методом проб и ошибок.

Нам надо найти такое число х, чтобы значение выражения х(х + 3) было равно 70. Попробуем подставить в это выражение, например, х = 4: 4 (4 + 3) = 28. Мы видим, что выбранное число х слишком мало.

Возьмём теперь х = 6: 6 (6 + 3) = 54, и снова выбранное значение мало, хотя ближе к искомому. А следующая попытка оказывается удачной: при х = 7, имеем 7 (7 + 3) = 70. Значит, при х = 7 данное в условии равенство верно.

Казалось бы, уравнение уже решено, но это не так: ведь может оказаться, что буквенное выражение равно 70 при разных значениях букв. Поэтому нужны некоторые дополнительные рассуждения. Если бы число х было больше 7, то число х + 3 было больше 10, и тогда произведение оказалось бы больше 70. Точно так же число х не может быть меньше 7, иначе произведение будет меньше 70. Следовательно, среди натуральных чисел, есть только одно решение этого уравнения. Ответ: х = 7.

Итак, метод проб и ошибок позволяет найти ответ даже в случае, если уравнение представляет собой новый, не изученный ещё объект. Однако при использовании этого метода следует всегда помнить о том, что подбор одного решения не гарантирует полноты решения. Поэтому требуется дополнительное обоснование того, что найдены все возможные решения, и ни одно не пропущено.

г). Решение уравнений методом перебора.

При решении уравнений методом проб и ошибок мы видели, что простой подбор одного неизвестного числа не даёт уверенности в том, что найдены все искомые значения. В этом состоит существенный недостаток метода проб и ошибок.

Указанного недостатка лишен другой метод решения уравнений – метод полного перебора. При поиске неизвестного числа полным перебором рассматриваются все мыслимые возможности: если мы упустим хотя бы одну, то может оказаться, что именно она и даёт решение уравнение.

Полный перебор требует, как правило, больших усилий и большого времени. Однако внимательный анализ условия часто позволяет найти систему перебора, охватывающую все возможные варианты, но более короткую, чем просто перебор всех чисел по — порядку.

Например, глядя на уравнение х (х + 3) = 54, можно заметить, что его натуральные корни должны быть делителями числа 54. Значит, х может принимать лишь значения: 1, 2, 3,6, 9, 18, 27, 54. Подставляя эти числа вместо буквы х в уравнение, находим единственный корень х = 6.

Решим еще одно уравнение методом перебора.

Делители числа 20 – 1, 2, 4, 5, 10, 20.

Можно проанализировать и сделать вывод, что среди натуральных решений могут быть только числа большие 3, но меньшие 7. такими числами будут 4 и 5. проверим это.

х = 4, 4( 4 –– 4) = 4 13 = 12.

х = 5, 5(5 – 2)(7 – 5) = 52 2 = 20.

х= 5 – корень уравнения.

Если бы мы не делали анализа, то нам нужно было проверить все 6 чисел. А если число имеет много делителей, то перебор вариантов может оказаться слишком громоздким. Не всегда удаётся подобрать корни уравнения, и тем более доказать единственность решения. Может оказаться, что среди натуральных чисел решения нет, а среди других чисел оно есть.

Именно поэтому математики всегда стремились найти общие решения различных классов уравнений.

3.3. Математические фокусы.

В этом разделе я хочу показать, как с помощью уравнений отгадывать математические загадки и показывать математические фокусы. Основной темой математических фокусов являются угадывание задуманных чисел или результатов действий над ними. Весь секрет фокусов в том, что «отгадчик» знает и умеет использовать особые свойства чисел, а задумавший этих свойств не знает. Математический интерес каждого фокуса и заключается в разоблачении его теоретических основ, которые в большинстве случаев довольно просты, но иногда бывают хитро замаскированы. Рассмотрю один из математических фокусов. Фокусник предложил каждому из публики задумать число. Потом он сказал: «Прибавьте к задуманному числу 5. Теперь из результата вычтите 2. Теперь к результату прибавьте 7». Потом фокусник спросил у желающих, какое число получилось. Услышав ответ, он немедленно объявил каждому, какое число тот задумал. Этот фокус легко разгадать, если умеешь составлять и решать уравнения. Слева запишу задания «фокусника», а справа — выражения, которые он мысленно при этом составляет.

Задумайте число. Обозначаю его буквой х. Прибавьте к нему число 5. Получается число х + 5.

Из результата вычтите 2. Получается (х + 5) – 2.

К результату прибавьте 7. Получается ((х + 5) – 2) + 7. Скажите ваш результат. Допустим, он равен 17.

Приравнивая составленное выражение ((х + 5) – 2) + 7 к 17, получаю уравнение. ((х + 5) – 2) + 7 = 17, Упростим левую часть уравнения, воспользовавшись свойствами сложения и вычитания: ((х + 5) – 2) + 7 = (х + (5 – 2)) + 7 = (х + 3) + 7 = х + (3 + 7) = х + 10. Уравнение теперь получилось совсем простое : х + 10 = 17. Задуманное число х = 17 – 10, х = 7. Такие фокусы нетрудно придумать и самому. Например, эти два фокуса я придумал сам.

· Задумайте число, утройте его. Прибавьте к результату 10, а затем вычтите 1.Скажите, сколько получилось? А я скажу, какое число вы задумали (нужно от названного числа отнять 9 и результат разделить на 3).

· Задумайте число, прибавьте к нему 15, затем вычтите 7 и прибавьте задуманное число. Скажите, сколько получилось? А я скажу, какое число вы задумали (нужно от названного числа отнять 8 и результат разделить на 2).

Удивительной для непосвященных кажется способность отгадывать задуманное другим число. Но если вы узнаете секреты математических фокусов, то сможете не только их показывать, но и придумывать новые. Вы просите товарища задумать любое число, затем отнять от него 1, результат умножить на 2, из произведения вычисть задуманное число и сообщить вам результат. Прибавив к нему число 2, вы отгадаете задуманное. Секрет фокуса становится понятен, если записать предложенные действия в виде алгебраического выражения (x-1)2 – x, где x – задуманное число. Раскрыв скобки, и выполнив действия, мы получим, что это выражение равно x-2. Если ответ равен 23, то задумано число 21. Чтобы угадать задуманное число нужно от результата отнять 2

1.Задумайте число. Умножьте его на 3. К полученному прибавьте полученное разделите на 3. Скажите, сколько получилось?

Решение. (3х + 6) : 3 = х + 2. Чтобы получить задуманное число, нужно от названного числа отнять 2.

2. Задумайте число. Умножьте его на 4. Из полученного вычтите 3. Полученное умножьте на 3, К полученному прибавьте 5. Полученное разделите на 4. К полученному прибавьте 1. Скажите, сколько получилось? Решение. ((4х – 3)3 + 5) : 4 + 1 = (12х – 9 + 5) : 4 + 1 = ( 12х – (9 – 5)) : 4 + +1 = (12х – 4) : 4 + 1 = 3х – 1 + 1 = 3х – (1 – 1) = 3х – 0 = 3х.

Чтобы получить задуманное число, нужно названное число разделить на 3.

3. Задумайте число. Прибавьте к нему 3. Умножьте полученное на 6. Отнимите от полученного 3. Вычтите из полученного результата задуманное число. Полученное разделите на 5. Скажите”, сколько получилось?

Решение (( х + 3) 6 – 3 – х ) : 5 = ( 6х + 18 – 3 – х) : 5 = ( 5х + 15) : 5 = х + 3 . Чтобы получить задуманное число, нужно от названного числа отнять 3.

4. Задумайте любое число. Удвойте его. К полученному прибавьте 3. Полученное число умножьте на задуманное. От полученного результата отнимите задуманное. Полученное разделите на удвоенное задуманное число. Скажите, сколько получилось? Чтобы получить задуманное число, надо от названного числа отнять 1.

Очень эффектно выглядят фокусы на отгадывание даты рождения и возраста зрителей, особенно в малознакомой компании.

Возраст и дата рождения

Порядковый номер месяца рождения нужно умножить на 100 и к получившемуся произведению прибавить число месяца, на которое приходится день рождения. Затем полученную сумму нужно умножить на 2 и к тому, что получится, прибавить 8. Результат нужно умножить на 5, к произведению прибавить 4 и получившуюся сумму умножить на 10. К тому, что получится, остается прибавить полное число лет (возраст), увеличенное на 4. Пусть каждый, выполнивший все эти вычисления, запишет на листочке бумаги свою фамилию, получившееся число и передаст листочек вам. Получив эти листочки, вы по ним каждому можете сказать его возраст и дату рождения. Придется поступать так: из получившегося числа, записанного на листочке, каждый раз вычитайте по 444 и разность разбивайте на грани справа налево по две цифры в каждой. Первая грань справа даст возраст, вторая — число и третья — порядковый номер месяца рождения.

Работа над данной темой помогла узнать мне много нового из истории математики. Мне пришлось рассмотреть дополнительную математическую литературу, чтобы узнать что-то новое про уравнения, и я подтвердил гипотезу, что существуют различные способы решения уравнений.

Просмотрев все учебники по математики с 5 по 11 классы, я убедился в важности выбранной темы. В течение всех лет мы расширяем знания по теме «Уравнения». Я узнал решение более сложных уравнений с помощью правила

нахождения неизвестной компоненты и решение задач на составление уравнений, решал уравнения с применением их свойств, узнал названия уравнений: линейные, квадратные, дробно — рациональные, биквадратные, тригонометрические, иррациональные, показательные и логарифмические уравнений.

Конечно, эти названия мне ни о чём не говорят, но я теперь знаю, какие бывают уравнения, и что со временем я научусь их решать.

Мне было интересно узнать, что уравнения и математические фокусы, которые сейчас могут решать ученики 5-6 класса, в древности были по силам только математикам и мудрецам. И что, используя известные мне свойства сложения и умножения, я смог провести исследования и доказал на простых уравнениях, что значение корня не изменится, если:

— к обеим частям уравнения прибавить или вычесть одно и то же число;

— обе части уравнения умножить или разделить на число, неравное нулю.

Я научился решать более сложные уравнения, используя 4 способа, о них я прочитал в дополнительной литературе. При выполнении работы мне пришлось решить более 120 уравнений. Во время недели математики я показал математические фокусы в 5-х классах и в 3 – 4 классах.

Вместе с моим руководителем мы составили задания для одноклассников. Среди этих заданий есть те, для решения которых достаточно знаний, полученных на уроках. Но есть и такие уравнения, которые решаются новыми способами, о которых я рассказал в работе, то есть требуют дополнительных знаний. Это для тех ребят, кто захочет научиться решать уравнения, используя новые способы.

Я, думаю, что новые знания, которые я получил, пригодятся мне в дальнейшей учёбе. Все цели и задачи, которые я ставил перед собой, я выполнил.

Список использованной литературы

общеобразовательных учреждений. // М.: Мнемозина, 2005.

2. , БеленковаЕ. Ю. Математика 5 класс.

Задания для обучения и развития учащихся.// М.: Интеллект-

3. Математика: Учебник-собеседник для 5 – 6 классов средних школ//

Просвещение, 1989. (Б-ка учителя математики), стр.187

4. , и др. Математика. Учебник для 4 класса нач.

Школы в 2 ч. Ч. 2. (Второе полугодие) – М.: Просвещение, 2005.

5. Энциклопедический словарь юного математика //

Сост. . М.: Педагогика, 1985, стр.345

6. Энциклопедия для детей. Т. 11. Математика // Ред. коллегия:

М. Аксёнова, В. Володин и др. – М.: Аванта, 2005, стр.237


источники:

http://school-science.ru/12/7/48345

http://pandia.ru/text/78/386/20944.php