Ионные и молекулярные уравнения реакции солей

Как составлять ионные уравнения. Задача 31 на ЕГЭ по химии

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации — вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O + ) и анионы хлора (Cl — ). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br — (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая «обычные» (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl — . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо «виртуальных» молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы — катионы Na + и анионы Cl — . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH — = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH — c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку — 2 балла.

Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O — молекулярное уравнение («обычное» уравнения, схематично отражающее суть реакции);
  • H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O — полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH — = H 2 O — краткое ионное уравнение (мы убрали весь «мусор» — частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений


  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем «в виде молекул».
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ — краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия — это две соли. Заглянем в раздел справочника «Свойства неорганических соединений». Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

BaCl 2 + Na 2 SO 4 = BaSO 4 &#x2193 + 2NaCl.

Таблица растворимости подсказывает нам, что BaSO 4 действительно не растворяется в воде (направленная вниз стрелка, напомню, символизирует, что данное вещество выпадает в осадок). Молекулярное уравнение готово, переходим к составлению полного ионного уравнения. Обе соли, присутствующие в левой части, записываем в ионной форме, а вот в правой части оставляем BaSO 4 в «молекулярной форме» (о причинах этого — чуть позже!) Получаем следующее:

Ba 2+ + 2Cl — + 2Na + + SO 4 2- = BaSO 4 &#x2193 + 2Cl — + 2Na + .

Осталось избавиться от балласта: убираем ионы-наблюдатели. В данном случае в процессе не участвуют катионы Na + и анионы Cl — . Стираем их и получаем краткое ионное уравнение:

Ba 2+ + SO 4 2- = BaSO 4 &#x2193.

А теперь поговорим подробнее о каждом шаге нашего алгоритма и разберем еще несколько примеров.

Как составить молекулярное уравнение реакции

Должен сразу вас разочаровать. В этом пункте не будет однозначных рецептов. Действительно, вряд ли можно рассчитывать, что я смогу разобрать здесь ВСЕ возможные уравнения реакций, которые могут встретиться вам на ЕГЭ или ОГЭ по химии.

Ваш помощник — раздел «Свойства неорганических соединений». Если вы хорошо знакомы с четырьмя базовыми классами неорганических веществ (оксиды, основания, кислоты, соли), если вам известны химические свойства этих классов и методы их получения, можете на 95% быть уверены в том, что у вас не будет проблем на экзамене с написанием молекулярных уравнений.

Оставшиеся 5% — это некоторые «специфические» реакции, которые мы не сможем перечислить. Не будем лить слез по поводу этих 5%, а вспомним лучше номенклатуру и химические свойства базовых классов неорганических веществ. Три задания для самостоятельной работы:

Упражнение 1 . Напишите молекулярные формулы следующих веществ: оксид фосфора (V), нитрат цезия, сульфат хрома (III), бромоводородная кислота, карбонат аммония, гидроксид свинца (II), фосфат стронция, кремниевая кислота. Если при выполнении задания у вас возникнут проблемы, обратитесь к разделу справочника «Названия кислот и солей».

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3 ) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме «Химические свойства основных классов неорганических соединений».

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие — оставить в «молекулярной форме». Придется запомнить следующее.

В виде ионов записывают:


  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , . ).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин «все остальные вещества», и которые, следуя примеру героя известного фильма, требуют «огласить полный список» даю следующую информацию.

В виде молекул записывают:


  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты . );
  • вообще, все слабые электролиты (включая воду. );
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение — растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) — нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие — в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) — нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl — сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 — растворимая соль. Записываем в ионной форме. Вода — только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl — = Cu 2+ + 2Cl — + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода — типичный кислотный оксид, NaOH — щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 — оксид, газообразное соединение; сохраняем молекулярную форму. NaOH — сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 — растворимая соль; пишем в виде ионов. Вода — слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH — = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка — это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS&#x2193 + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl — = ZnS&#x2193 + 2Na + + 2Cl — .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3 ) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

В следующей части статьи мы научимся составлять краткие ионные уравнения и разберем большое количество примеров. Кроме того, мы обсудим специфические особенности задания 31, которое вам предстоит решать на ЕГЭ по химии.

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6df2b9981d860ba5 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Растворы; электролитическая диссоциация; гидролиз солей

Электронное учебное пособие

Растворы; электролитическая диссоциация; гидролиз солей

В результате изучения данной темы вы узнаете:
  • Почему растворы занимают промежуточное положение между смесями и химическими соединениями.
  • Чем отличается ненасыщенный раствор от разбавленного и насыщенный от концентрированного.
  • Какими правилами нужно руководствоваться при составлении ионных уравнений.
  • Почему при растворении в воде некоторых солей меняется реакция среды (с нейтральной на кислую или щелочную).

В результате изучения данной темы вы научитесь:

  • Составлять уравнения реакции ионного обмена.
  • Составлять полные и сокращенные ионные уравнения гидролиза солей.
  • Предсказывать реакцию среды в растворах солей.
  • Решать задачи на определение концентрации растворов.

Учебные вопросы:

9.1. Растворы и их классификация

Растворами называют гомогенные системы, в которых одно вещество распределено в среде другого (других) веществ.

Растворы состоят из растворителя и растворенного вещества (веществ). Эти понятия условны. Если одним из составляющих растворов веществ является жидкость, а другими — газы или твердые вещества, то растворителем обычно считают жидкость. В других случаях растворителем считают тот компонент, которого больше.

Газообразные, жидкие и твердые растворы

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы. Газообразным раствором является, например, воздух и другие смеси газов. Морская вода — наиболее распространенный жидкий раствор различных солей и газов в воде. К твердым растворам принадлежат многие металлические сплавы.

Истинные и коллоидные растворы

По степени дисперсности различают истинные и коллоидные растворы (коллоидные системы). При образовании истинных растворов растворенное вещество находится в растворителе в виде атомов, молекул или ионов. Размер частиц в таких растворах равен 10 –7 — 10 –8 см. Коллоидные растворы относятся к гетерогенным системам, в которых частицы одного вещества (дисперсная фаза) равномерно распределены в другом (дисперсионная среда). Размер частиц в дисперсных системах находится в пределах от 10 –7 см до 10 –3 и более см. Следует отметить, что здесь и далее везде мы будем рассматривать истинные растворы.

Ненасыщенные, насыщенные и пересыщенные растворы

Процесс растворения связан с диффузией, т. е. с самопроизвольным распределением частиц одного вещества между частицами другого. Так, процесс растворения твердых веществ, имеющих ионное строение, в жидкостях можно представить следующим образом: под влиянием растворителя разрушается кристаллическая решетка твердого вещества, а ионы распределяются равномерно по всему объему растворителя. Раствор останется ненасыщенным до тех пор, пока в него может переходить еще некоторое количество вещества.

Раствор, в котором вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в состоянии равновесия с твердой фазой растворяемого вещества, называется насыщенным. Растворимость данного вещества равна его концентрации в насыщенном растворе. При строго определенных условиях (температура, растворитель) растворимость есть величина постоянная.

Если растворимость вещества увеличивается с ростом температуры, то охлаждая насыщенный при более высокой температуре раствор, можно получить пересыщенный раствор, т.е. такой раствор, концентрация вещества в котором выше концентрации насыщенного раствора (при данных температуре и давлении). Пересыщенные растворы очень неустойчивы. Легкое сотрясение сосуда или введение в раствор кристаллов вещества, находящегося в растворе, вызывает кристаллизацию избытка растворенного вещества, и раствор становится насыщенным.

Разбавленные и концентрированные растворы

Не следует путать ненасыщенный и насыщенный растворы с разбавленным и концентрированным. Понятия разбавленный и концентрированный растворы – относительные и между ними нельзя провести четкой границы. Они определяют соотношение между количествами растворенного вещества и растворителя. В общем случае, разбавленные растворы – это растворы, содержащие небольшие количества растворенного вещества по сравнению с количеством растворителя, концентрированные – с большим содержанием растворенного вещества.

Например, если при 20 o С растворить в 100 г воды 25 г NaCl, то полученный раствор будет концентрированным, но ненасыщенным, поскольку растворимость хлорида натрия при 20 o С составляет 36 г в 100 г воды. Максимальная масса AgI, которая растворяется при 20 o С в 100 г Н2О равна 1,3·10 –7 г. Полученный при этих условиях раствор AgI будет насыщенным, но очень разбавленным.

9.2. Физическая и химическая теория растворов; тепловые явления при растворении

Физическая теория растворов была предложена В. Оствальдом (Германия) и С. Аррениусом (Швеция). Согласно этой теории частицы растворителя и растворенного вещества (молекулы, ионы) равномерно распределяются по всему объему раствора вследствие процессов диффузии. При этом между растворителем и растворенным веществом отсутствует химическое взаимодействие.

Химическая теория была предложена Д.И. Менделеевым. Согласно представлениям Д.И. Менделеева между молекулами растворяемого вещества и растворителем происходит химическое взаимодействие с образованием неустойчивых, превращающихся друг в друга соединений растворенного вещества с растворителем – сольватов.

Русские ученые И.А. Каблуков и В.А. Кистяковский объединили представления Оствальда, Аррениуса и Менделеева, заложив тем самым основу современной теории растворов. Согласно современной теории в растворе могут существовать не только частицы растворенного вещества и растворителя, но и продукты физико-химического взаимодействия растворенного вещества с растворителем – сольваты. Сольваты – это неустойчивые соединения переменного состава. Если растворителем является вода, их называют гидратами. Сольваты (гидраты) образуются за счет ион-дипольного, донорно-акцепторного взаимодействий, образования водородных связей и т.д. Например, при растворении NaCl в воде между ионами Na + , Cl – и молекулами растворителя возникает ион-дипольное взаимодействие. Образование гидратов аммиака при его растворении в воде происходит за счет образования водородных связей.

Гидратная вода иногда настолько прочно связывается с растворенным веществом, что выделяется вместе с ним из раствора. Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами, а вода, входящая в состав таких кристаллов, называется кристаллизационной. Примерами кристаллогидратов является медный купорос CuSO4·5H2O, алюмокалиевые квасцы KAl(SO4)2·12H2O.

Тепловые эффекты при растворении

В результате изменения структуры веществ при переходе их из индивидуального состояния в раствор, а также в результате происходящих взаимодействий изменяются свойства системы. На это указывают, в частности, тепловые эффекты растворения. При растворении происходят два процесса: разрушение структуры растворяемого вещества и взаимодействие молекул растворенного вещества с молекулами растворителя. Взаимодействие растворенного вещества с растворителем называется сольватацией. На разрушение структуры растворяемого вещества затрачивается энергия, а взаимодействие частиц растворенного вещества с частицами растворителя (сольватация) – процесс экзотермический (идет с выделением теплоты). Таким образом, процесс растворения может быть экзотермическим или эндотермическим, в зависимости от соотношения этих тепловых эффектов. Например, при растворении серной кислоты наблюдается сильное разогревание раствора, т.е. выделение теплоты, а при растворении нитрата калия – сильное охлаждение раствора (эндотермический процесс) .

9.3. Растворимость и ее зависимость от природы веществ

Растворимость – наиболее изученное свойство растворов. Растворимость веществ в различных растворителях колеблется в широких пределах. В табл. 9.1 приведена растворимость некоторых веществ в воде, а в табл. 9.2 – растворимость йодида калия в различных растворителях.

Таблица 9.1.Растворимость некоторых веществ в воде при 20 o С


источники:

http://gomolog.ru/reshebniki/8-klass/tetrad-gabrielyan-2020/39/chast-1-zadanie-3.html

http://chemege.ru/rastvory-el-diss-gidroliz-solej/