Ионные уравнения это 9 класс химия

Ионные уравнения

Ионные уравнения — неотъемлемая часть сложной и интересной химической науки. Такие уравнения позволяют наглядно увидеть, какие ионы вступают в химические превращения. В виде ионов записывают вещества, которые подвергаются электролитической диссоциации. Разберем историю вопроса, алгоритм составления ионных уравнений и примеры задач.

ИСТОРИЯ ВОПРОСА

Еще древние алхимики, проводя нехитрые химические реакции в поисках философского камня и записывая в толстые фолианты результаты своих исследований, использовали определенные знаки для химических веществ. У каждого ученого была своя система, что неудивительно: каждый хотел защитить свои тайные знания от происков завистников и конкурентов. И лишь в VIII веке появляются единые обозначения для некоторых элементов.

В 1615 году Жан Бегун в своей книге «Начала химии», что по праву считается одним из первых учебников в этом разделе естествознания, предложил использовать условные обозначения для записи химических уравнений. И лишь в 1814 году шведский химик Йонс Якоб Берцелиус создал систему химических символов на основе одной или двух первых букв латинского названия элемента, подобную той, с которой ученики знакомятся на уроках.

В восьмом классе (параграф 12, учебник «Химия. 8 класс» под редакцией В.В. Еремина) ребята научились составлять молекулярные уравнения реакций, где и реагенты, и продукты реакций представлены в виде молекул.

Однако это упрощенный взгляд на химические превращения. И об этом задумывались ученые уже в XVIII веке.

Аррениус в результате своих экспериментов выяснил, что растворы некоторых веществ проводят электрический ток. И доказал, что вещества, обладающие электропроводностью, в растворах находятся в виде ионов: положительно заряженных катионов и отрицательно заряженных анионов. И именно эти заряженные частицы вступают в реакции.

ЧТО ТАКОЕ ИОННЫЕ УРАВНЕНИЯ

Ионные уравнения реакций — это химические равенства, в которых вещества, вступающие в реакцию, и продукты реакций обозначены в виде диссоциированных ионов. Уравнения данного типа подходят для записи химических реакций замещения и обмена в растворах.

Ионные уравнения — неотъемлемая часть сложной и интересной химической науки. Такие уравнения позволяют наглядно увидеть, какие ионы вступают в химические превращения. В виде ионов записывают вещества, которые подвергаются электролитической диссоциации (тема подробно разбирается в параграфе 10, учебник «Химия. 9 класс» под редакцией В.В. Еремина). В виде молекул записывают газы, вещества, выпадающие в осадок, и слабые электролиты, которые практически не диссоциируют. Газы обозначаются стрелкой вверх (↑), субстанции, выпадающие в осадок, стрелкой вниз (↓).

ОСОБЕННОСТИ ИОННЫХ УРАВНЕНИЙ

1. Реакции ионного обмена, в отличие от окислительно-восстановительных реакций, протекают без нарушения валентности веществ, вступающих в химические превращения.

— окислительно-восстановительная реакция

— реакция ионного обмена

2. Реакции между ионами протекают при условии образования в ходе реакции плохорастворимого осадка, выделения летучего газа или образования слабых электролитов.

Удивительно, что реакции обмена могут проходить даже с нерастворимыми солями слабых кислот. В этом случае сильная кислота вытесняет слабую из ее солей. В качестве примера можно привести сокращенное ионное уравнение разведения карбоната кальция в сильных кислотах.

АЛГОРИТМ СОСТАВЛЕНИЯ ИОННОГО УРАВНЕНИЯ

Записываем молекулярное уравнение химического процесса.

Балансируем молекулярное уравнение с помощью коэффициентов.

Чтобы правильно сбалансировать равенство, нужно вспомнить закон сохранения массы веществ (параграф 12, «Химия. 8 класс» под редакцией В.В. Еремина), согласно которому в ходе химических превращений новые атомы не появляются, а старые не разрушаются. Т.е. число атомов в продуктах реакции равно числу атомов в исходных веществах. Помним, что водород и кислород уравниваем в последнюю очередь.

Определяем, какие вещества в химической реакции диссоциируют, т.е. распадаются на ионы.

Записываем в виде ионов:

  • растворимые соли;
  • сильные кислоты (H2SO4, HNO3, HCl и др.);
  • растворимые в воде основания.

Записываем в виде молекул:

  • нерастворимые соли;
  • слабые кислоты, щелочи, вода;
  • оксиды;
  • газы;
  • простые вещества;
  • большинство органических соединений.

Если есть сомнения в растворимости реагента или продукта реакции, можно проверить по специальной таблице, которая является справочным материалом, ей можно пользоваться на различных экзаменах.

В таблице, помимо растворимости соединений, представлены также заряды катионов и анионов, участвующих в реакциях.

Определяем многоатомные ионы.

Это необходимо сделать, т.к. данные соединения не разлагаются на отдельные атомы и имеют свой заряд. Чаще всего в химических превращениях участвуют следующие многоатомные ионы:

Записываем равенство таким образом, чтобы все диссоциирующие субстанции были представлены в виде катионов и анионов.

Проверяем, чтобы уравнение было сбалансировано, т.е. количество различных атомов в частях с реагентами и продуктами реакции совпадало.

На данном этапе мы получили полное ионное уравнение.

Вычеркиваем идентичные ионы в обеих частях равенства, т.е. катионы и анионы с одинаковыми нижними индексами и зарядами, и переписываем равенство без данных ионов.

Проверяем, чтобы количество атомов элементов совпадало в правой и левой частях уравнения. Таким образом получаем краткое ионное уравнение.

ПРИМЕРЫ

Задача 1

Выясните, произойдет ли химическое взаимодействие между растворами гидроксида калия и хлорида аммония. (Записать для реакции молекулярное, полное ионное и сокращенное ионное уравнение.)

Записываем молекулярное уравнение, проверяем коэффициенты.

Помним, что гидроксид аммония — нестабильное соединение и разлагается на аммиак и воду.

Записываем окончательное уравнение:

NB! Благодаря летучести и резкому раздражающему запаху 3%-й раствор NH3 называется «нашатырный спирт» и используется в медицине.

Подсматривая в таблицу растворимости, помечаем полное ионное уравнение, не забывая о зарядах ионов.

Вычеркивая идентичные катионы и анионы в обеих частях реакции, составляем краткое ионное уравнение.

Делаем вывод: химическая реакция между гидроксидом калия и хлоридом аммония протекает с образованием воды и выделением аммиака — летучего газа с резким запахом.

Задача 2

А сейчас выполним задание из учебника «Химия. 9 класс» под редакцией В.В. Еремина.

Налейте в пробирку 1 мл раствора карбоната натрия и аккуратно прилейте к нему пару капелек соляной кислоты.

Составьте уравнение реакции, напишите полное и сокращенное ионные уравнения.

Записываем реакцию в молекулярном виде, расставляем коэффициенты, если это необходимо.

Подсматривая в таблицу растворимости, записываем полное ионное уравнение, не забывая отмечать заряды ионов.

Вычеркивая одинаковые катионы и анионы в правой и левой частях равенства, составляем краткое ионное уравнение.

Вопрос «Что происходит?» остался без ответа. К сожалению, в домашних условиях этот опыт осуществить трудновато, так как стиральной содой уже давно никто не пользуется, да и соляную кислоту в аптеке уже не продают. Но примерно такой же визуальный эффект можно наблюдать, если смешать раствор пищевой соды с раствором уксусной кислоты.

Урок по теме «Реакции ионного обмена». 9-й класс

Класс: 9

Презентация к уроку

Учебник: Рудзитис Г.Е, Фельдман Ф.Г. Химия: учебник для 9 класса общеобразовательных учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – 12-е изд. – М.: Просвещение, ОАО “Московские учебники”, 2009. – 191 с.

Цель: сформировать представление учащихся о реакциях, протекающих межу ионами, условий протекания реакций ионного обмена до конца, обратимых реакциях, полных и сокращенных ионных уравнениях.

Задачи:

  • способствовать систематизации понятийного аппарата: ион, растворы, электролиты и неэлектролиты, основные типы реакций в неорганической химии, обратимые реакции, условия протекания реакций ионного обмена до конца
    • 5” — обосновать, доказать;
    • 4” — характеризовать, применить;
    • 3” — рассказать;
  • способствовать совершенствованию специальных предметных умений: составлять полные и сокращенные ионные уравнения;
  • способствовать формированию общеучебных умений:
    • а) учебно-интеллектуальных (анализировать факты, устанавливать причинно-следственные связи; выдвигать гипотезу; сравнивать соли и химические реакции, классифицировать, делать выводы);
    • б) учебно-информационных (работать с текстом);
    • в) учебно–организационных (понимать смысл задания, распределять время для выполнения заданий планировать работу по организации работы, осуществлять самоконтроль);
  • способствовать формированию критического мышления учащихся (критически оценивать собственные знания по теме и сопоставлять их с научными);

Форма проведения: урок с использованием ИКТ, включением парных, индивидуальных форм организации учебно-познавательной деятельности учащихся.

Продолжительность учебного занятия: 45 минут.

Использование педагогических технологий: метод эвристического обучения, обучение в сотрудничестве

I. Организационный момент – 1 мин: мобилизующее начало (приветствие, проверка готовности к уроку, организация внимания учащихся), информация о цели и ходе урока, мотивация

Фронтальная беседа (3 мин)

    Что такое реакции обмена? (это реакции между двумя сложными веществами, при которых они обмениваются своими составными частями).
  • Что такое ионы? (это заряженные частицы, которые отличаются от атомов числом электронов)
  • На какие группы делятся ионы? (катионы – положительные ионы; анионы – отрицательные ионы)
  • Что такое электролитическая диссоциация? (процесс распада молекул электролитов на ионы при растворении в воде или расплавлении)
  • На какие ионы распадаются при электролитической диссоциации кислоты (ионы водорода и ионы кислотного остатка)
  • На какие ионы распадаются при электролитической диссоциации растворимые основания? (ионы металла и ионы ОН -1 групп)
  • На какие ионы распадаются при электролитической диссоциации соли? (ионы металла и ионы кислотного остатка)
  • Таким образом, какие ионы выделяют при электролитической диссоциации? (Н +1 , ОН -1 , Ме +n , кислотный остаток -n )
  • Именно эти ионы находятся в таблице растворимости: (Работа с таблицей растворимости – определение растворимых и нерастворимых веществ)

II. Изучение нового материала. Объяснение учителя. 15 мин.

Реакции обмена протекают между ионами, поэтому называются реакции ионного обмена Выводится определение (слайд 2):

Реакции ионного обмена идут до конца в трех случаях:

  • если образуется осадок – нерастворимое вещество после реакции)
  • если выделяется газ
  • если образуется вода

В остальных случаях реакции обмена являются обратимыми

Разберем эти случаи поподробнее (случаи разбираются на слайдах и на доске, проводится фронтальная беседа: почему реакция идет, что и почему образуется, как определить образование осадка, газа, воды и т.п.):

1) Если образуется осадок (слайд 3):

а) CuSO4 + 2NaOH Na2SO4 + Cu(OH)2

б) 2AgNO3 + CaCl2 Ca(NO3)2 + 2AgCl

в) Na2CO3 + Ca(NO3)2 2NaNO3 + CaCO3

г) BaCl2 + K2SO4 2KCl + BaSO4

2) Если выделяется газ (слайд 4):

а) CaCO3 + 2HNO3 Ca(NO3)2 + H2CO3 (H2O + CO2 )

б) Na2SO3 + 2HCl 2NaCl + H2SO3 (H2O + SO2 )

в) CuS + 2HCl CuCl2 + H2S

3) Если образуется вода (слайд 5):

а) CuO + H2SO4 CuSO4 + H2O

б) Fe(OH)3 + 3HCl FeCl3 + 3H2O

в) NaOH + HNO3 NaNO3 + H2O

4) Если НЕ образуются осадок, газ и вода, то реакции являются обратимыми (слайд 6):

Обратимые реакции – это реакции, которые при одних и тех же условиях протекают в двух противоположных направлениях

а) 2NaNO3 + CaCl2 Ca(NO3)2 + 2NaCl

б) K3PO4 + 3NaCl Na3PO4 + 3KCl

в) CuCl2 + Na2SO4 CuSO4 + 2NaCl

Ионные уравнения (слайды 7, 8, 9):

Для реакций ионного обмена составляют полные и сокращенные ионные уравнения. При этом на ионы никогда не раскладывают :

  • нерастворимые вещества (см. таблицу растворимости);
  • оксиды;
  • воду;
  • газы

1) Запишем молекулярное уравнение и уравняем его:

CuSO4 + 2NaOH Na2SO4 + Cu(OH)2

2) Разложим на ионы все, что возможно и затем сократим одинаковые ионы в обоих частях уравнения:

Cu +2 + SO4 -2 + 2Na +1 + 2OH -1 2Na +1 + SO4 -2 + Cu(OH)2 (полное ионное уравнение)

3) Запишем то, что получилось:

Cu +2 + 2OH -1 Cu(OH)2 (сокращенное ионное уравнение)

Другие примеры составления ионных уравнений (разбираются с пояснениями):

CaCO3 + 2HNO3 Ca(NO3)2 + H2CO3 (H2O + CO2)

CaCO3 + 2H +1 + 2NO3 -1 Ca +2 + 2NO3 -1 + H2O + CO2

CaCO3 + 2H +1 Ca +2 + H2O + CO2

CuS + 2HCl CuCl2 + H2S

CuS + 2H +1 + 2Cl -1 Cu +2 + 2Cl -1 + H2S

CuS + 2H +1 Cu +2 + H2S

NaOH + HNO3 NaNO3 + H2O

Na +1 + OH -1 + H +1 + NO3 -1 Na +1 + NO3 -1 + H2O

OH -1 + H +1 H2O

K3PO4 + 3NaCl Na3PO4 + 3KCl

3K +1 + PO4 -3 + 3Na +1 + 3Cl -1 3Na +1 + PO4 -3 + 3K +1 + 3Cl -1

Вывод: сокращенного ионного уравнения нет, следовательно, у обратимых реакций нет сокращенных ионных уравнений

III. Закрепление изученного материала (20 мин)

Учащимся предлагается выполнить задания в парах. Каждое задание предлагается на слайде и проверяется на следующем слайде (слайдах).

Задание 1 (Слайд 10)

Саша и Алеша делали домашнее задание. Они составили уравнения реакций, но случайно на лист бумаги пролили чернила. Помогите ученикам восстановить запись. Составьте к восстановленным

Проверка задания 1 (слайды 11, 12).

1) NaOH + HCl NaCl + H2O

Na +1 + OH -1 + H +1 + Cl -1 Na +1 + Cl -1 + H2O

OH -1 + H +1 H2O

2) MgCl2 + Na2SO3 MgSO3 + 2NaCl

Mg +2 + 2Cl -1 + 2Na +1 + SO3 -2 MgSO3 + 2Na +1 +2Cl -1

Mg +2 + SO3 -2 MgSO3

3) K2SO3 + 2HNO3 2KNO3 + H2O + SO2

2K +1 + SO3 -2 + 2H +1 + 2NO3 -1 2K +1 + 2NO3 -1 + H2O + SO2

SO3 -2 + 2H +1 H2O + SO2

4) ZnSO4 + 2NaOH Zn(OH)2 + Na2SO4

Zn +2 + SO4 -2 + 2Na +1 + 2OH -1 2Na +1 + SO4 -2 + Zn(OH)2

Zn +2 + 2OH -1 Zn(OH)2

5) Al(OH)3 + 3HNO3 Al(NO3)3 + 3H2O

Al(OH)3 + 3H +1 + 3NO3 -1 Al +3 + 3NO3 -1 + 3H2O

Al(OH)3 + 3H +1 Al +3 + 3H2O

6) CaCO3 + 2 HCl CaCl2 + H2O + CO2

CaCO3 + 2H +1 + 2Cl -1 Ca +2 + 2Cl -1 + H2O + CO2

CaCO3 + 2H +1 Ca +2 + H2O + CO2

Задание 2. (слайд 13):

Полные и сокращенные ионные уравнения к заданиям 2,3,4,5 дети должны будут сделать дома)

Колдунья с вороном отравили лечебный колодец, в котором был раствор хлористого кальция, который помогал целому городу. Он использовался горожанами при отравлениях, кровотечениях, аллергиях. Они превратили раствор СaCl2 в нерастворимый известняк CaCO3. Помогите жителям “расколдовать” колодец, если в вашем распоряжении есть растворы NaCl, Na2CO3, HCl, H2SO4, Zn(NO3)2.

Проверка задания 2 (слайд 14):

СаСО3 + 2HCl CaCl2 + H2O + CO2

Задание 3 (слайд 15):

Олененок спешит к друзьям. Он шел долгих 3 дня. Ему осталось только перейти реку, но река оказалась испорчена – она наполнена раствором серной кислоты. Помогите Олененку воссоединиться с друзьями, если в вашем распоряжении есть растворы NaCl, Ba(OH)2 HCl, CuSO4, Ba(NO3)2.

Проверка задания 3 (слайд 16):

H2SO4 + Ba(OH)2 BaSO4 + 2H2O

Задание 4 (слайд 17):

Тигренок и крокодил поранились, а у доктора Айболита закончились все лекарства. У него в распоряжении есть некоторые химикаты: NaNO3, CuOH)2 H2SO4, НCl, BaCl2. Он знает, что раствор сульфата меди (II) может оказывать антисептическое, вяжущее, ранозаживляющее действие. Помогите доктору приготовить раствор и вылечить тигренка и крокодила.

Проверка задания 4 (слайд 18):

Cu(OH)2 + H2SO4 CuSO4 + 2H2O

Задание 5 (слайд 19):

Однажды русалка заметила, что ее друзья рыбы перестали с ней играть и уплывают подальше от ее дома. Она не могла понять, в чем дело, ведь они не ссорились. И тогда ее мама рассказала ей, что рыбы уплывают, потому что около их дома почти нет растений, и рыбам не хватает кислорода. Русалка подумала, что можно посадить растения, но они будут расти долго. А из старых мудрых книжек она узнала, что можно насытить воду углекислым газом – повышение концентрации СО2 в воде приводит к значительному ускорению в росте растений. В распоряжении русалки оказались: NaOH, ВaCO3, K2SO4, НCl, Ba(NO3)2. помогите русалке получить углекислый газ.

Проверка задания 5 (слайд 20):

BаСО3 + 2HCl BaCl2 + H2O + CO2

IV. На следующем уроке мы продолжим разбирать тему “Реакции ионного обмена” и напишем небольшую проверочную работу, а сейчас .

Домашнее задание (слайд 21):

Параграф 4 упр. 1, 2, 3 стр. 22 и . не забудьте составить полные и сокращенные ионные уравнения к заданиям 2, 3, 4, 5, решенным в классе, иначе Ваша помощь сказочным персонажам не будет полной.

Ионные уравнения это 9 класс химия

Ключевые слова конспекта: свойства ионов, определение ионов, реакции ионного обмена, ионное уравнение, реакции в растворах электролитов.

Свойства ионов

Число электронов в атоме равно числу протонов. Протоны и нейтроны прочно связаны друг с другом и образуют ядро атома. Ион – атом или часть молекулы, где есть неравное количество электронов и протонов. Если электронов больше, чем протонов, то ион называют отрицательным. Иначе ион называют положительным.

Ионы отличаются от атомов строением и свойствами. Некоторые ионы бесцветны, а другие имеют определенный цвет. Для каждого из ионов характерны специфические химические свойства.

Таблица 1. Определение ионов

Определяемый ион

Реактив, содержащий ион

Результат реакции

Н +ИндикаторыИзменение окраскиAg +Cl –Белый осадокCu 2+OH –Синий осадокS 2–Черный осадок Окрашивание пламени в сине-зеленый цветFe 2 +OH –Зеленоватый осадок, который с течением времени буреетFe 3+OH –Осадок бурого цветаZn 2+OH –Белый осадок, при избытке ОН – растворяетсяS 2 –Белый осадокАl 3+OH –Белый желеобразный осадок, который при избытке ОН – растворяетсяNH4 +OH –Запах аммиакаBa 2+SO4 2 –Белый осадок Окрашивание пламени в желто-зеленый цветCa 2 +CO3 2 –Белый осадок Окрашивание пламени в кирпично-красный цветNa +Цвет пламени желтыйK +Цвет пламени фиолетовый (через кобальтовое стекло)Cl –Ag +Белый осадокH2SO4*Выделение бесцветного газа с резким запахом (НСl)Br –Ag +Желтоватый осадокH2SO4*Выделение SO2 и Вг2 (бурый цвет)I –Ag +Желтый осадокH2SO4*Выделение H2S и I2 (фиолетовый цвет)SO3 2 –H +Выделение SO2 — газа с резким запахом, обесцвечивающего раствор фуксина и фиолетовых чернилCO3 2 –H +Выделение газа без запаха, вызывающего помутнение известковой водыСН3СОО –H2SO4Появление запаха уксусной кислотыNO3 –H2SO4(конц.) и CuВыделение бурого газаSO4 2 –Ba 2+Белый осадокPO4 3 –Ag +Желтый осадокOH –ИндикаторыИзменение окраски индикаторов

* При определении галогенид-ионов с помощью серной кислоты используют твердую соль.

Ионное уравнение

В водных растворах все электролиты в той или иной степени распадаются на ионы и реакции происходят между ионами.

Сущность реакций в растворах электролитов отражается ионным уравнением. В ионном уравнении учитывается то, что сильный электролит в растворе находится в диссоциированном виде. Формулы слабых электролитов и нерастворимых в воде веществ в ионных уравнениях принято записывать в недиссоциированной на ионы форме. Растворимость электролита в воде нельзя считать критерием его силы. Многие нерастворимые в воде соли являются сильными электролитами, однако концентрация ионов в растворе оказывается низкой вследствие низкой растворимости. Именно поэтому в уравнениях их формулы записывают в недиссоциированной форме.

При составлении ионных уравнений реакций с участием сильных кислот часто для упрощения записывают формулу иона Н + , а не H3O + .

Реакции в растворах электролитов происходят в направлении связывания ионов. Существует несколько форм связывания ионов: образование осадков, выделение газообразных веществ, образование слабых электролитов. Рассмотрим конкретные примеры:

  1. Образование осадков.

Уравнение в молекулярном виде: Ca(NO3)2 + Na2CO3 = СаСO3↓ + 2NaNO3

Полное ионное уравнение:

Сокращенное ионное уравнение:

  1. Образование слабых электролитов (например, воды, слабых кислот):

а) КОН + НCl = КCl + H2O
К + + OH – + Н + + Cl – = К + + Cl – + H2O
OH – + Н + = H2O

б) HNO2 – азотистая кислота (слабая):
NaNO2 + НCl = NaCl + HNO2
Na + + NO2 + Н + + Cl – = Na + + Cl – + HNO2
NO2 – + Н + = HNO2

Иногда реакции в растворах электролитов осуществляются с участием нерастворимых веществ или слабых электролитов в направлении более полного связывания ионов. Например, мрамор растворяется в соляной кислоте с образованием углекислого газа:

Таблица 2. Уравнения ионных реакций

Реакции ионного обмена

Для ионных реакций выражение «в молекулярном виде», как и сама запись, является условным. При анализе приведенных в Таблице 2 уравнений реакций выясняется, что реакции ионного обмена протекают до конца в следующих случаях:

  1. если выпадает осадок;
  2. если выделяется газ;
  3. если образуется малодиссоциирующее вещество, например вода.

Если в растворе нет таких ионов, которые могут связываться между собой, реакция обмена не протекает до конца, т. е. является обратимой. При составлении уравнений таких реакций, как и при составлении уравнений диссоциации слабых электролитов, ставится знак обратимости.

Чтобы сделать вывод о протекании реакции ионного обмена до конца, надо использовать данные таблицы растворимости солей, оснований и кислот в воде.

Чтобы составить уравнения всех возможных реакций, в которых участвуют хлорид магния и другие растворимые в воде вещества, рассуждают так:

  • Убеждаются, растворимо ли в воде взятое вещество, в данном случае хлорид магния MgCl2.
  • Приходят к выводу, что хлорид магния MgCl2 будет реагировать только с такими растворимыми в воде веществами, которые способны осадить либо ионы Mg 2+ , либо хлорид-ионы Сl .
  • Ионы Mg 2+ можно осадить: а) ионами ОН , т. е. нужно подействовать любой щелочью, что приведет к образованию малорастворимого гидроксида магния Mg(OH)2; б) при действии растворимыми в воде солями, содержащими один из следующих анионов: . Для этого можно воспользоваться солями натрия, калия и аммония, содержащими указанные анионы, так как эти соли растворимы в воде.
  • Хлорид-ионы Сl можно осадить катионами Ag + + и Pb 2+ . Поэтому для проведения реакции нужно выбрать растворимые соли, содержащие эти катионы.

При составлении уравнений реакций ионного обмена, в которых образуются газообразные вещества, следует учесть, что анионы способны реагировать с кислотами с образованием соответствующего газа, например:

В свете представлений об электролитической диссоциации кислот, оснований и солей общие свойства этих веществ определяются наличием общих ионов, которые входят в их состав

Конспект урока «Реакции ионного обмена. Ионное уравнение». Выберите дальнейшее действие:


источники:

http://urok.1sept.ru/articles/640124

http://uchitel.pro/%D1%80%D0%B5%D0%B0%D0%BA%D1%86%D0%B8%D0%B8-%D0%B8%D0%BE%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE-%D0%BE%D0%B1%D0%BC%D0%B5%D0%BD%D0%B0/