Ионные уравнения гидролиза солей kcn

Гидролиз цианида калия

KCN — соль образованная сильным основанием и слабой кислотой, поэтому реакция гидролиза протекает по аниону.

Молекулярное уравнение
KCN + HOH ⇄ HCN + KOH

Полное ионное уравнение
K + + CN — + HOH ⇄ HCN + K + + OH —

Сокращенное (краткое) ионное уравнение
CN — + HOH ⇄ HCN + OH —

Среда и pH раствора цианида калия

В результате гидролиза образовались гидроксид-ионы (OH — ), поэтому раствор имеет щелочную среду (pH > 7).

Гидролиз солей, образованных кислотой и основанием

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Гидролиз солей.

Гидролиз – химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодисcоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых или катионов основных солей) и сопровождающееся изменением рН среды. Гидролизу не подвергаются соли, образованные сильными кислотами и основаниями, например КСl.

Гидролиз соли, образованной слабой кислотой и сильным основанием, например CH3COONa. Соль в рас­творе полностью диссоциирует на ионы:

Вода, как уже указывалось, является слабым электролитом:

Ионы водорода воды взаимодействуют с ацетат-ионами с образованием слабой уксусной кислоты

Таким образом, гидролиз в ионной форме можно представит уравнением

Как видно, в результате гидролиза появилось некоторое избыточное количество гидроксид-ионов, а реакция среды стала основной, следовательно, при гидролизе соли, образованной сильным основанием и слабой кислотой, происходит увеличение рН системы, т. е. среда становится основной (происходит подщелачивание раствора).

Показателем глубины протекания гидролиза является степень гидролиза β, представляющая собой отношение концентрации гидролизованных молекул сгидр к исходной концентрации растворенных молекул электролита:

Принимая для упрощения, что в разбавленных растворах активность ионов мало отличается от их концентрации сиона = аиона, запишем константу равновесия реакции гидролиза:

Так как концентрация воды при гидролизе изменяется очень ма­ло, то принимаем ее постоянной и, умножая на константу равновесия, получим константу гидролиза Кr:

Как указывалось ранее, [OH – ][ Н + ] ≈ КВ, а отношение – [Н + ][А – ] / [НА]

является константой диссоциации КД слабой кислоты НА. Таким обра­зом, константа гидролиза равна отношению ионного произведения воды и константы диссоциации слабого электролита:

Если выразить концентрацию ионов и молекул при установлении равновесия

через степень гидролиза β и исходную концентрацию иона с, то по­лучаем, что

Подставив эти значения в уравнение

Если гидролизу подвергается многоосновной анион, то гидролиз протекает по стадиям:

Константа гидролиза по первой ступени значительно выше, чем константа гидролиза по последней ступени. Например, для гидролиза СО3 2 – , при 298 К

Поэтому, при расчете концентраций ионов [ОН – ] или [Н + ], второй и третьей ступенью гидролиза обычно пренебрегают. Анализ уравне­ний гидролиза показывает, что в уравнении Кr = КВ / КД для расчета кон­станты гидролиза по первой ступени входит константа диссоциа­ции слабого электролита по последней ступени. Например, константа гидролиза иона СО3 2- по первой ступени

Гидролиз солей, образованных сильной кислотой и слабым основанием, напримерNH4C1. В растворе соль NH4Cl диссоциирована

Гидролизу подвергается ион слабого основания NH4 +

Как видно, в результате гидролиза соли появляется некоторое избыточное количество ионов водорода, т. е. среда подкисляется. Таким образом, гидролиз соли, образованной сильной кислотой и сла­бым основанием, приводит к подкислению раствора.

Степень гидролиза и константа гидролиза в данном случае опи­сываются теми же уравнениями, но лишь с включением константы дис­социации слабого основания.

Гидролиз соли, образованной слабым основанием и слабой кислотой, напримерNH4F

Как видно, в результате гидролиза образуются как ионы водорода, так и ионы гидроксида. Константа гидролиза зависит от константы диссоциации как слабого основания КД,О, так и слабой кислоты КД,К

Как видно, в зависимости от соотношения рКД,К и рКД,О среда мо­жет иметь как кислую, так и основную реакцию.

Гидролиз играет важную роль в природных и технологических процессах. Например, расщепление пищи в желудочно-кишечном тракте идет по реакции гидролиза ее компонентов. Энергия в орга­низмах в основном переносится с помощью аденозинтрифосфата (АТФ), гидролиз которого характеризуется отрицательным значени­ем энергии Гиббса (-30,5 кДж/моль).

Гидролиз используется в технике при получении ценных продук­тов из древесины, жиров и других веществ.

Пример 1. Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей: a) KCN; б) Na2CO3; в) ZnSO4. Определите реакцию среды растворов этих солей.

Решение, а) Цианид калия KCN — соль слабой одноосновной кислоты (см. табл. 9) HCN и сильного основания КОН. При растворении в воде молекулы KCN полностью диссоциируют на катионы K + и анионы CN. Катионы K + не могут связывать ионы ОН воды, так как КОН — сильный электролит. Анионы же CN связывают ионы H + воды, образуя молекулы слабого элекролита HCN. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

CN – + H2O ↔ HCN + OH –

или в молекулярной форме

KCN + H2O↔ HCN + KOH

В результате гидролиза в растворе появляется некоторый избыток ионов ОН, поэтому раствор KCN имеет щелочную реакцию( рН > 7).

Таблица 19. Константы и степени диссоциации некоторых слабых электролитов

ЭлектролитыФормулаЧисленные значения констант диссоциацииСтепень диссоциации в 0,1 н. растворе, %
Азотистая кислотаHNO2K= 4,0 · 10 -46,4
Аммиак (гидроксид)NH4OHK= 1,8 · 10 -51,3
Муравьиная кислотаHCOOHK= 1,76 · 10 -44,2
Ортоборная кислотаH3BO3K1= 5,8 · 10 -100,007
K2= 1,8 · 10 -13
K3= 1,6 · 10 -14
Ортофосфорная кислотаH3PO4K1= 7,7 · 10 -327
K2= 6,2 · 10 -8
K3= 2,2 · 10 -13
Сернистая кислотаH2SO3K1= 1,7 · 10 -220,0
K2= 6,2 · 10 -8
Сероводородная кислотаH2SK1= 5,7 · 10 -80,07
K2= 1,2 · 10 -15
Синильная кислотаHCNK= 7,2 · 10 -100,009
Угольная кислотаH2CO3K1= 4,3 · 10 -70,17
K2= 5,6 · 10 -11
Уксусная кислотаCH3COOHK= 1,75 · 10 -51,3
Фтороводородная кислотаHFK= 7,2 · 10 -48,5
Хлорноватистая кислотаHClOK= 3,0 · 10 -80,05

б) Карбонат натрия Na2CO3 — соль слабой многоосновной кислоты и сильного основания. В этом случае анионы соли CO3 2- , связывая водородные ионы воды, образуют анионы кислой соли НСО3, а не молекулы Н2СО3, так как ионы НСО3 диссоциируют гораздо труднее, чем молекулы Н2СО3. В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза

или в молекулярной форме

В растворе появляется избыток ионов ОН, поэтому раствор Na2CO3 имеет щелочную реакцию (рН > 7).

в) Сульфат цинка ZnSO4 — соль слабого многокислотного основания Zn(OH)2 и сильной кислоты H2SO4. В этом случае катионы Zn 2+ связывают гидроксильные ионы воды, образуя катионы основной соли ZnOH + . Образования молекул Zn(OH)2 не происходит, так как ионы ZnOH + диссоциируют гораздо труднее, чем молекулы Zn(OH)2. В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза

Zn 2+ + H2O ↔ ZnOH + + H +

или в молекулярной форме

В растворе появляется избыток ионов водорода, поэтому раствор ZnSO4 имеет кислую реакцию (рН 3+ + H2O ↔ AlOH 2+ + H +

Если растворы этих солей находятся в одном сосуде, то идет взаимное усиление гидролиза каждой из них, ибо ионы H + и ОH образуют молекулу слабого электролита Н2O. При этом гидро­литическое равновесие сдвигается вправо и гидролиз каждой из взятых солей идет до конца с образованием А1(ОН)3 и СО22СО3). Ионно-молекулярное уравнение:

Гидролиз

Материалы портала onx.distant.ru

Теоретическое введение

Примеры обратимого гидролиза

Случаи необратимого гидролиза

Константа и степень гидролиза

Примеры решения задач

Задачи для самостоятельного решения

Теоретическое введение

Гидролиз – обменная реакция взаимодействия растворенного вещества (например, соли) с водой. Гидролиз происходит в тех случаях, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

Примеры обратимого гидролиза

Соли, образованные сильным основанием и слабой кислотой, например , CH3COONa, Na2CO3, Na2S, KCN гидролизуются по аниону:

СН3СООNa + НОН ↔ СН3СООН + NaОН (рН > 7)

Гидролиз солей многоосновных кислот протекает ступенчато. 1 ступень:

CO3 2– + HOH ↔ HCO3 – + OH – ,

или в молекулярной форме:

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

Соли, образованные слабым основанием и сильной кислотой, например , NH4Cl, FeCl3, Al2(SO4)3, гидролизуются по катиону:

или в молекулярной форме:

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. 1 ступень:

Fe 3+ + HOH ↔ FeOH 2+ + H + ;

FeCl3 + HOH ↔ FeOHCl2 + HCl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H + ;

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl.

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H + ;

Fe(OH)2Cl + HOH ↔ Fe(OH)3+ HCl.

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

Соли, образованные слабым основанием и слабой кислотой, например , CH3COONH4, (NH4)2CO3, HCOONH4, гидролизуются и по катиону, и по аниону:

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. Поскольку в рассматриваемом примере константы диссоциации СH3COOH и NH3·H2О при 25 о С примерно равны (Кд(СH3COOH) = 1,75·10 –5 , Кд(NH3·H2О) = 1,76·10 –5 ), то раствор соли будет нейтральным.

При гидролизе HCOONH4 реакция раствора будет слабокислой, поскольку константа диссоциации муравьиной кислоты (Кд(HCOOН) = 1,77·10 –4 ) больше константы диссоциации уксусной кислоты.

Соли, образованные сильным основанием и сильной кислотой (например, NaNO3, KCl, Na2SO4), при растворении в воде гидролизу не подвергаются.

Случаи необратимого гидролиза

Гидролиз некоторых солей, образованных слабыми основаниями и слабыми кислотами, протекает необратимо. Необратимо гидролизуется, например , сульфид алюминия:

Следует отметить, что при смешении растворов солей гидролизующихся по аниону и катиону:

Mg 2+ + HOH ↔ MgOH + + H + ,

CO3 2– + HOH ↔ HCO3 – + OH –

Продукты гидролиза первой соли усиливают гидролиз второй соли и наоборот. В результате при смешении водных растворов сульфата магния и карбоната натрия образуется основной карбонат магния:

Основные карбонаты выпадают в осадок также при смешивании растворов карбонатов щелочных металлов и солей Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.

При сливании растворов соды и солей Fe 2+ , Ca 2+ , Sr 2+ , Ba 2+ реакции протекают следующим образом:

(Ме – Fe, Ca, Sr, Ba)

При взаимодействии солей Аl 3+ , Сr 3+ и Fe 3+ в растворе с сульфидами, карбонатами и сульфитами в результате гидролиза в осадок выпадают не сульфиды, карбонаты и сульфиты этих катионов, а их гидроксиды:

Следует отметить, что катион Fe 3+ производит окисляющее действие на анион S 2- . В результате протекает реакция:

2Fe 3+ + S 2- = 2Fe 2+ + S о .

Например , хлорид железа (III) реагирует с сульфидом калия:

2FeCl3 + 3K2S = 2FeS + S + 6KCl

Некоторые соли в результате гидролиза в воде образуют малорастворимые оксосоединения:

SbCl3 + H2O → SbOCl↓ + 2HCl.

Необратимо гидролизуются в водных растворах галогенангидриды:

Константа и степень гидролиза

Константа Кг и α г степень гидролиза для растворов электролитов связаны между собой уравнением, по форме совпадающим с уравнением Оствальда:

(1)

Константа гидролиза Кг может быть рассчитана на основе значений ионного произведения воды Кw и константы диссоциации Кд образующихся в результате гидролиза слабой кислоты или слабого основания:

(2)

Примеры решения задач

Задача 1. Вычислите Кг, α г и рН 0,01 М раствора NH4Cl при температуре 298 К, если при указанной температуре Кд(NH3·H2O) = 1,76× 10 -5 .

Решение.

.

[Н + ] = 2,4·10 –4× 0,01 = 2,4× 10 –6 М.

рН = — lg 2,4× 10 –6 = 5,6.

Задача 2. Определите константу гидролиза, степень гидролиза и рН 0,02 М раствора НСООNa при 298 К, если при указанной температуре Кд(НСООН) = 1,77× 10 –4 .

Решение. Формиат натрия гидролизуется в соответствии с уравнением:

НСОО — + Н2О ↔ НСООН + ОН — .

Поскольку [НСООН] = [ОН – ] и [НСОО – ]·Сисх(НСООNa), то константу гидролиза можно записать следующим образом:

.

[Н + ] = 10 –14 ÷1,06× 10 –6 = 9,4·10 –9 М

рН = — lg 9,4× 10 –9 = 8

Задача 3. Определите рН 0,006М раствора NaNO2, если α г = 7·10 –3 %.

Решение.

[ОН – ] = 0,006× 7× 10 –5 = 4,2× 10 –7 М.

[Н + ] = 10 –14 :4,2× 10 –7 = 2,4× 10 –8 М.

рН = — lg 2,4× 10 –8 = 7,6.

Задача 5. Определите рН 0,1 М раствора Na3PO4 при 298 К, если константы диссоциации ортофосфорной кислоты при указанной температуре соответственно равны: Кд.1 = 7,11× 10 — 3 , Kд.2 = 6,34× 10 — 8 , Kд.3 = 4,40× 10 — 13 .

Решение. Na3PO4 диссоциирует в растворе и подвергается ступенчатому гидролизу:

Следует обратить внимание на выбор “нужной” величины Кд.

Kдисс.2 = 6,34·10 — 8

Так как Кг,1 > > Кг,2, то можно считать, что соль подвергается гидролизу только по первой ступени.

,

поскольку [HPO4 2- ] = [OH — ].

рОН = –lg 4,76× 10 — 2 = 1,32 и рН = 14 – 1,32 = 12,68.

Задачи для самостоятельного решения

1. Гидролиз соли Na2SO3 усилится при добавлении в раствор веществ:

а) Н2Oб) Na2CO3в) NaOH
г) H2SO4д) Na2Sе) Na2SO4

2. Напишите уравнение реакции NiCl2 + Na2CO3 + H2O → .


источники:

http://farmf.ru/lekcii/gidroliz-solej-obrazovannyh-kislotoj-i-osnovaniem/

http://chemege.ru/gidroliz-2/