Иррациональные уравнение и их история

Путешествие в мир иррациональных уравнений

Презентация к уроку

Образовательные – ввести понятие “иррациональное уравнение”; разобрать подробно алгоритм решения иррациональных уравнений методом возведения в квадрат обеих частей уравнения, который является основным; систематизировать и рассмотреть другие методы решения иррациональных уравнений; способствовать формированию умения выбирать наиболее рациональные способы решения иррациональных уравнений.

Развивающие – выработать умение мыслить, делать выводы, применять теоретические знания для решения задач.

Воспитывающие – воспитывать практическое отношение к знаниям, продолжить воспитание у учащихся устойчивого интереса к математике.

Тип урока: лекция.

Формы работы: фронтальная.

Оборудование: компьютер, мультимедийный проектор, экран, доска, листы для самостоятельной работы, листы с заданиями для работы на уроке.

1. Организационный момент. (2-3 минуты).

Проверить готовность группы и кабинета к уроку.

Сегодня на уроке я приглашаю вас в мир иррациональных уравнений, нам предстоит познакомиться с ними, разобрать способы решения данных уравнений и научиться выбирать наиболее рациональный способ для конкретного иррационального уравнения. Данная тема важна, так она входит в материал необходимый для сдачи экзамена по математике. (Слайд 1-2)

2. Актуализация знаний. Начало истории иррациональных чисел. (10 минут)

Вначале давайте немного поговорим об иррациональных числах, о том кто стоял у истоков появления иррациональных чисел. (Слайды 37- 48)

Если натуральные числа возникли в процессе счета, а рациональные – из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.

Иррациональное число – это вещественное число, которое не является рациональным, то есть не может быть представлено в виде дроби, где числитель и знаменатель является целым числом (причем знаменатель не равен нулю).

Концепция иррациональных чисел была не явным образом воспринята индийскими математиками в 7 веке до нашей эры, когда Манава выяснил, что квадратные корни некоторых натуральных чисел, таких, как 2 и 61, не могут быть явно выражены.

Первоначально термины “рациональный” и “иррациональный” относились не к числам, а соизмеримым и соответственно несоизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми. Несоизмеримые величины еще в древности были названы иррациональными.

Первое доказательство существования иррациональных чисел приписывается Гиппасу, пифагорейцу, который нашёл это доказательство, изучая длины сторон пентаграммы. Гиппас обосновал, что не существует единой единицы длины. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным.

Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами “за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям”.

Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа.

В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.

Не все знают, что современная форма и появилась не сразу. Эволюция знака радикала длилась почти пять веков, начиная с в далекого XIII в., когда итальянские и некоторые европейские математики впервые называли квадратный корень латинским словом Radix (корень) или сокращенно R.

Современный знак корня произошел от обозначения, примяемого немецкими математиками XV-XVI вв.:

Скорее всего, в последствии от таких обозначений как раз и образовался знак V, близкий по записи к знакомому школьникам современному знаку, но без верхней черты.

Автором этого труда был преподаватель математики из Вены, уроженец Чехии Криштоф Рудольф. Эти знаком пользовались А.Жирар, С.Стевин V (2) или V (3).

В 1626 г. нидерландский математик А.Жирар видоизменил знак корня Рудольфа и ввел совсем близкое к современному обозначение.

Такая форма записи начала вытеснять прежний знак R. Однако некоторое время знак корня писали разрывая верхнюю черту, а именно так:

И только в 1637 году Рене Декарт соединил горизонтальную черту с галочкой, применив новое обозначение в своей книге “геометрия”.

3. Изложение нового материала. (60 минут)

3.1. Понятие иррационального уравнения. (Слайд 3)

Иррациональным уравнением называются уравнения, в которых переменная содержится под знаком корня (радикала) или под знаком операции возведения в дробную степень.

Примеры иррациональных уравнений:

3.2. Основные приемы решения иррациональных уравнений. (Слайд 4)

Основная идея при решении уравнений данного типа — это освобождение их от иррациональности. Этого можно достичь путем совместного возведения обеих частей уравнения в нужную степень. Например:

Либо избавиться от иррациональности можно путем извлечения корня из соответствующей степени выражения, например:

При возведении обеих частей уравнения в нечетную степень (3,5,7…) выполняется равносильное преобразование уравнения, поэтому посторонние решения не появляются. (Слайды 6-7)

Пример решения уравнения:

Ответ: 0;1.

Возведение обеих частей уравнения в одну и ту же четную степень, является неравносильным преобразованием уравнений, поэтому в решении могут появляться посторонние корни. Для отсеивания посторонних корней необходимо выполнять проверку или находить область допустимых значений. (Слайды 8-9)

Рассмотрим примеры решения подобных уравнений (слайды 10-13).

В случае извлечения нечетных корней (n=3,5,…) преобразование вида является всегда равносильным, поэтому посторонних корней не появляется. (Слайд 14)

При извлечении корней четной степени (n=2,4,…) результат необходимо брать по модулю , так как по определению результат выполнения данной операции должен быть неотрицательным числом. (Слайд 15)

Также при решении иррациональных уравнений необходимо учитывать не равносильность преобразований корня четной степени вида (слайд 16):

— разбиение корня;

— слияние корней.

При разбиении подкоренного выражения возможна потеря корней из-за сужения области допустимых значений. При слиянии корней возможно получение посторонних корней из-за расширения исходного ОДЗ. Для того, чтобы предотвратить возможную потерю корней из-за сужения ОДЗ исходного выражения необходимого наряду с разбиением вида рассмотреть и второй его вариант (Слайд 17-18)

Алгоритм решения иррациональных уравнений основными методами (слайд 19):

    Найти ОДЗ или после нахождения корней уравнения выполнить проверку.
  1. Возвести в одну и ту же степень обе части уравнения.
  2. Решить полученное уравнение.
  3. Записать ответ.

3.3. Другие методы решения иррациональных уравнений. (Слайд 20)

1. Уединение корня в одной из частей уравнения, а потом возведение обеих частей уравнения в одну и ту же степень.

2. Введение новой переменной и решение полученного уравнения любым из известных методов.

3. Умножение на сопряженное выражение.

4. Метод применения свойств функции при нахождении корней уравнения.

5. Иррациональные уравнения, приводимые к уравнениям с модулями.

6. Искусственные приемы решения иррациональных уравнений.

7. Графический метод решения уравнений.

3.4. Примеры решения иррацилональных уравнений разными методами.

3.4.1. Уединение корня в одной из частей уравнения, а потом возведение обеих частей уравнения в одну и ту же степень. (Слайды 21-22)

Решить уравнение:

3.4.2. Введение новой переменной и решение полученного уравнения любым из известных методов. (Слайды 23-24)

Решить уравнение: .

3.4.3. Умножение на сопряженное выражение. (Слайды 25-27)

Решить уравнение:

3.4.4. Метод применения свойств функции при нахождении корней уравнения. (Слайд 28-30)

Решить уравнения: .

.

3.4.5. Иррациональные уравнения, приводимые к уравнениям с модулями. (Слайд 31-32)

Решить уравнение:

3.4.6. Искусственные приемы решения иррациональных уравнений. (Слайд 33-35)

Решить уравнение: .

4. Разбор заданий для самостоятельного решения дома. (Слайд 36) (10 минут)

.

3.

Для разбора методов решения уравнений можно привлечь учащихся и потом обобщить все сказанное.

Первое уравнение быстрее решить методом подбора корней, применяя свойства функции, второе – решается основным приемом возведения обеих частей уравнения в квадрат. При решении третьего уравнения можно применить метод введения новой переменной, а для решения четвертого уравнения метод умножения на сопряженной уравнение.

5. Итог путешествия. Рефлексия. (Слайд 40) (5-7 минут)

Для подведения итогов и обобщения всего изложенного на уроке можно провести блиц опрос учащихся по вопросам:

  1. Какие уравнения называются иррациональными?
  2. Какой метод является основным при решении иррациональных уравнений?
  3. Всегда ли необходимо выполнять проверку или находить ОДЗ?
  4. Какие еще методы решения иррациональных уравнений вы запомнили?

3. А.Г. Мордкович, П.В. Семенов “Алгебра и начала анализа 11 класс”, профильный уровень, часть 1; Москва; “Мнемозина”; 2007 г.

4. Ю. Н. Макарычев “Алгебра 9” , дополнительные главы к школьному учебнику, учебное пособие для учащихся школ с углубленным изучением математики; Москва; Просвещение; 1997 г.

Реферат на тему Иррациональные уравнения

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

на тему: Иррациональные уравнения

В школьном курсе алгебры рассматриваются различные виды уравнений – линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данная курсовая работа посвящена иррациональным уравнениям, методам их решения. Кроме того, в работе введены понятия уравнений следствий и равносильных уравнений, а также приведены примеры задач, математическими моделями которых служат иррациональные уравнения. В данной работе содержится небольшая историческая справка, посвященная введению иррациональных чисел.

Термин «рациональное» (число) происходит от латиноамериканского слова ratio – отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V — VI вв. римские авторы Капелла и Кассиодор переводили эти термины на латынь словами rationalis и irrationalis . Термин «соизмеримый» ( commensurabilis ) ввел в первой половине VI в. другой римский автор- Боэций.

Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например, корень из квадратного числа, «алогос» – невыразимое словами, а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой. В Европе термин surdus — глухой впервые появился в середине XII в. у Герарда Кремонского, известного переводчика математических прозведений с арабского на латынь, затем у итальянского математика Леонардо Фабоначчи и других европейских математиков, вплоть до XVIII в. Правда уже в XVI в. Отдельные ученые, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин считали понятие иррационального числа равноправным с понятием рационального числа. Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью.»

Еще до Бомбелли и Стевина многие ученые стран Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Более того, комментируя «Начала» Евклида и исследуя общую теорию отношения Евдокса, Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В том же направлении много было сделано крупнейшим математиком XIII в. ат-Туси.

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами древнего Вавилона и эллинистической эпохи широко пользовались шестидесятеричными дробями, арифметические действия с которыми они называли «арифметикой астрономов». По аналогии с шестидесятеричными дробями самаркандский ученый XV в. ал-Каши в работе «Ключ арифметики» ввел десятичные дроби которыми он пользовался для повышения точности извлечения корней. Независимо от него по такому же пути шел открывший в 1585 г. десятичные дроби в Европе Симон Стевин, который в своих «приложениях к алгебре» (1594 г.) показал, что десятичные дроби можно использовать для бесконечно близкого приближения к действительному числу. Таким образом, уже в XVI в. зародилась идея о том, что естественным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков (и геометрических величин вообще) и необходимости расширения понятия рационального числа. На числовой оси иррациональные числа, как и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию.

В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.

2. ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ

Равносильные уравнения. Следствия уравнений.

При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

Определение: Уравнение f ( x )= g ( x ) равносильно уравнению f 1( x )= g 1( x ), если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3 x -6=0; 2х–1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения f ( x )= g ( x ) и f 1( x )= g 1( x ) равносильны, обозначают так:

f ( x )= g ( x ) f 1( x )= g 1( x )

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство:
Докажем, что уравнение f ( x ) = g ( x )+ q ( x ) (1)
равносильно уравнению

f ( x ) – q ( x ) = g ( x ) (2)

Пусть х=а – корень уравнения. Значит имеет место числовое равенство f ( a )= g ( a )+ q ( a ) . Но тогда по свойству действительных чисел будет выполняться и числовое равенство f ( a )- q ( a )= g ( a ) показывающее, что а – корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказатью.

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

Доказательство: докажем, что уравнение 6х–3=0 равносильно уравнению 2х–1=0

решим уравнение 6х–3=0 и уравнение 2х–1=0

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

ОДЗ этого уравнения

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е. х²+х–2=0, а знаменатель не равен 0. Решая уравнение х²+х–2=0, находим корни х1=1, х2 = –2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

В этом случае говорят, что уравнение х²+х–2=0, есть следствие уравнения

пусть даны два уравнения:

f 1 ( x ) = g 1 ( x ) (3)

f 2 ( x ) = g 2 ( x ) (4)

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

Этот факт записывают так:

В том случае, когда уравнение (3) — есть также следствие уравнения (4), эти уравнения равносильны.

Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение – следствие
х²+х–2=0, имеет два корня x 1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.

Итак, если при решении уравнения происходит переход к уравнению – следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения – корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения и потому отброшен.

Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

получим уравнение следствие х²-4=0 имеющее два корня х1 = 2, х2 = -2 корень х2 = -2 – посторонний, так как не входит в ОДЗ исходного уравнения.

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Например, уравнение (х+1)(х+3)= х+1 (5)

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим (х+1)(х+2)=0, откуда находим х1=-1, х2=-2 .

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение х+3=1, имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

2.2. Определение иррациональных уравнений.

Иррациональными называются уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

3. МЕТОДЫ РЕШЕНИЯ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ.

3.1. Решение иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень.

Возведем обе части уравнения (1) в квадрат:

далее последовательно имеем:

5х – 16 = х² — 4х + 4

х² — 4х + 4 – 5х + 16 = 0

Проверка: Подставив х=5 в уравнение (1), получим – верное равенство. Подставив х= 4 в уравнение (1), получим – верное равенство. Значит оба найденных

значения – корни уравнения.

Преобразуем уравнение к виду:

и применим метод возведения в квадрат:

далее последовательно получаем.

Разделим обе части последнего уравнения почленно на 2:

еще раз применим метод возведения в квадрат:

х1 х2 = -14 х2 = -1

по теореме, обратной теореме Виета, х1=14, х2 = -1

корни уравнения х²-13х–14 =0

Проверка: подставив значение х=-14 в уравнение (2), получим–

— не верное равенство. Поэтому х = -14 – не корень уравнения (2).

Подставив значение x =-1 в уравнение (2), получим-

— верное равенство. Поэтому x =-1- корень уравнения (2).

3.2 Метод введения новых переменных.

Конечно, можно решить это уравнение методом возведения обеих частей уравнения в одну и ту же степень. Но можно решить и другим способом – методом введения новых переменных.

Введем новую переменную Тогда получим 2 y ²+ y –3=0 – квадратное уравнение относительно переменной y . Найдем его корни:

Т.к. , то – не корень уравнения, т.к. не

может быть отрицательным числом . А — верное равенство, значит x =1- корень уравнения.

Искусственные приёмы решения иррациональных уравнений.

Умножим обе части заданного уравнения на выражение

Презентация «Иррациональные уравнения»

Презентация содержит исторические сведения о возникновении иррациональных чисел, основные понятия по решению иррациональных уравнений

Скачать:

ВложениеРазмер
tepin_v._irratsionalnye_uravneniya.pptx2.36 МБ
Предварительный просмотр:

Подписи к слайдам:

Государственное автономное учреждение Калининградской области Профессиональная образовательная организация «Колледж сервиса и туризма» Выполнил: студент 1 курса Группа ПИ7-15 Тепин Владимир Специальность «Парикмахерское искусство» «Иррациональные уравнения»

Содержание: Введение (История происхождения иррациональных чисел). Определение иррациональных уравнений. Примеры для решения иррациональных уравнений. Список используемой литературы.

История происхождения иррациональных чисел

Первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми . Несоизмеримые величины, были названы еще в древности иррациональными.

Гиппас из Метапонта ( ок . 500 гг. до н. э.) Первое доказательство существования иррациональных чисел приписывается Гиппасу , пифагорейцу, который нашёл это доказательство, изучая длины сторон пентаграммы. Гиппас обосновал, что не существует единой единицы длины. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным.

Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа.

Рене Декарта В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в. Симон Стевин Джамшид ибн Мас‘уд ибн ад-Дин ал-Каши

Определение иррациональных уравнений

Иррациональными называются уравнения, в которых переменная содержится под знаком корня (радикала) или под знаком операции возведения в дробную степень. Примеры иррациональных уравнений: =3 = 1+ =x

Основная идея при решении уравнений данного типа – это освобождение их от иррациональности. Ее можно достичь путем совместного возведения обеих частей в нужную степень . =

При возведении обеих частей уравнения в нечетную степень (3,5,7. ) выполняется равносильное преобразование уравнения, поэтому посторонние решения не появляются!

Примеры решения уравнений: №1. Решить уравнение : = x ( x – 1 ) = 0 x=0 ; x=1 Ответ: 0; 1.

№2. Решить уравнение: Решение: ( А=1; B=6 ; C=5 Проверка : при x= при x= Ответ: -1

Примеры для самостоятельного решения:

Список используемой литературы Ш.А. Алимов «Алгебра и начала анализа: учебник для 10-11 классов общеобразовательных учреждений». В. С. Крамор , К. Н. Лунгу , А. К. Лунгу . «Математика: Типовые примеры на вступительных экзаменах. Пособие для старшеклассников и абитуриентов». Э. Н. Балаян «Практикум по решению задач. Иррациональные уравнения, неравенства и системы». Л. О. Денищева , Е. М. Бойченко, Ю. А. Глазков и др. «Готовимся к Единому Государственному экзамену. Математика». Под редакцией Ф. Ф. Лысенко, С. Ю. Кулабухова «Математика. Подготовка к ЕГЭ-2010»


источники:

http://infourok.ru/referat-na-temu-irracionalnye-uravneniya-4167175.html

http://nsportal.ru/ap/library/drugoe/2015/12/10/prezentatsiya-irratsionalnye-uravneniya