Иррациональные уравнения 10 класс видеоуроки алимов

Открытый урок «Иррациональные уравнения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Конспект открытого урока по алгебре и начала анализа в 10 классе.

Учебник : Алгебра и начала анализа за 10-11 класс .- авторы Алимов , Колягин, Ткачева, Федорова, Шабунин , 2015 год ФГОС.

Дата проведения открытого урока: 10.112020

ТЕМА: «Иррациональные уравнения»

Обучающая: дать понятие иррационального уравнения и рассмотреть способ решения.

Развивающая: Способствовать развитию навыка решения иррациональных уравнений.

Воспитательная: Воспитывать навыки аккуратности и правильности оформления уравнения в тетрадях.

I. Организационный момент

II. Проверка домашнего задания

III. Устно (можно использовать доску, карточки, презентацию).

Преобразуйте выражение (представьте в виде многочлена)

а) (а-5) 2 ; (а 2 +4в) 2 ; (2а-3) 2 ; (-х-7) 2

25х 2 +40х+4 = (5х+2) 2

4х 2 +1-2х = (2х-1) 2;

в) Решить уравнение

Опр .Уравнения, в которых переменная содержится под знаком корня, называются иррациональными.

Какие из следующих уравнений являются иррациональными?

Рассмотрим общий способ решения

При решении иррациональных уравнений почти всегда необходимо избавиться от радикалов.

Один из возможных методов состоит в том, что корень из выражения с переменой переносится в одну из частей равенства, а все остальные выражения в другую (уединение радикала).

После уединения выполняется возведение в квадрат, в куб или в другую степень.

При решении уравнения переходим к уравнению-следствию, проверка должна входить в решение как обязательная часть.

Проверка может осуществляться различными способами:

Каждый из найденных корней уравнения-следствия подставить в исходное уравнение и проверить, является ли он корнем исходного уравнения.

“ Вспомнить” все неравенства, которые надо было включать в систему, чтобы переходы были равносильными, и проверить выполняются ли для найденных “корней” эти неравенства.

(Проверить выполнение неравенства иногда бывает значительно проще, чем выполнение точного равенства).

Сегодня мы разбираем только уравнения первого способа.

IV. Переходим к записям в тетрадь

Число. Тема: Иррациональные уравнения.

У каждого на парте карточка с уравнениями:

Далее сильные учащихся разбирают решение более сложного уравнения по шаблону

Остальные самостоятельно решают уравнение (на доске и в тетрадях объясняет решение учитель):

Проверка усвоения учащимися материала на оценку “3” — ученики остаются на местах и решают уравнения (по выбору 2):

Проверка усвоения учащимися материала на оценку “4” и “5”: учащиеся решают уравнения по выбору из предложенных уравнений..

Оценка “5” — решены 5,6 уравнения, если нет решения 5,6 уравнения, то оценка “4”.

V. Итоги и рефлексия. По окончании урока каждый ученик получает оценку и соответствующие домашнее задание.

Итак, ребята! Какие уравнения мы сегодня на уроке рассмотрели?

– Дать определение иррациональных уравнений.

– Какая особенность существует при решении иррациональных уравнений?

– Какие способы решения иррациональных уравнений мы рассмотрели ?

Домашнее задание : №152(2,3), 154(2,4), 155(2)

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 949 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 681 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 567 433 материала в базе

Материал подходит для УМК

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

§ 9. Иррациональные уравнения

Другие материалы

  • 19.11.2020
  • 74
  • 2

  • 19.11.2020
  • 86
  • 3
  • 19.11.2020
  • 363
  • 10

  • 19.11.2020
  • 90
  • 3
  • 19.11.2020
  • 124
  • 0

  • 19.11.2020
  • 86
  • 0
  • 19.11.2020
  • 117
  • 0
  • 19.11.2020
  • 105
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 19.11.2020 924
  • DOCX 262.3 кбайт
  • 163 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Лаврентьев Александр Владимирович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 1 год и 2 месяца
  • Подписчики: 0
  • Всего просмотров: 952
  • Всего материалов: 1

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Новые курсы: управление детским садом, коучинг, немецкий язык и другие

Время чтения: 18 минут

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Обобщающий урок алгебры и начала анализа по теме «Методы решений иррациональных уравнений»

Разделы: Математика

Цели урока:

  • Образовательные обеспечить повторение, обобщение и систематизацию материала темы. Углубление в пределах темы. Создать условия контроля и самоконтроля усвоения знаний и умений.
  • Развивающие – способствовать формированию умений применять приемы: сравнения, обобщения, выделения главного, переноса знаний в новую ситуацию; развитию математического кругозора, мышления и речи, внимания и памяти.
  • Воспитательные – содействовать воспитанию интереса к математике, активности, мобильности, умения общаться, общей культуры.

Тип урока: урок обобщения и систематизации знаний.

Метод обучения – частично-поисковый (эвристический).

Тестовая проверка уровня знаний, работа по обобщающей схеме, решение познавательных обобщающих задач, системные обобщения, самопроверка, взаимопроверка.

Формы организации урока – индивидуальная, фронтальная, парная.

Оборудование: презентация, содержащая системно-обобщающую схему, блоки уравнений, шкалу оценок; высказывание: «Уравнение – это золотой ключ, открывающий все математические сезамы».

У обучающихся: листы учета знаний, системно-обобщающая схема, листочки, карточки с тестированием (4 варианта), по 3 кружочка (жёлтый, зелёный, красный).

Лист учета знаний.
Фамилия, имя ученика_____________________________________
Номер работыВид работыКоличество правильных ответов
1Математический диктант.
2Работа с обобщающей таблицей.
3Блоки уравнений:
  1. Устные ответы.
  2. Решение уравнений у доски.
4Тестирование.
5Итог.
6Оценка.

Ход урока

I. Организационный момент.

Французский писатель Анатоль Франс (1844–1924) однажды заметил: «Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом».

Так вот, давайте сегодня на уроке будем следовать этому совету писателя, будем активны, внимательны, будем поглощать знания с большим желанием, ведь они пригодятся вам в вашей дальнейшей жизни.

Сегодня у нас обобщающий урок по теме «Методы решений иррациональных уравнений». Повторяем, обобщаем, приводим в систему изученные виды, методы и приемы решения иррациональных уравнений.

Перед вами стоит задача – показать свои знания и умения по решению иррациональных уравнений.

II. Задание на дом.

Оцените свои способности. Задание на дом по уровню сложности:

на «3» – №183 (1, 3, 5), №155 (3, 4)

на «4» – №160 (2, 3), №156 (1, 2), №159 (1)

на «5» – №163 (1, 3), №188 (1, 4, 5).

Учебник: Алгебра и начала математического анализа. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень/[Ш.А. Алимов, Ю.М. Колягин и др.]. –М.: Просвещение, 2010.

III. Математический диктант.

Математический диктант выполняется с последующей самопроверкой.

Цель: контроль (самоконтроль) знаний по простейшим иррациональным уравнениям, определению иррациональных уравнений, ОДЗ переменной иррационального выражения.

Число правильных ответов учащиеся заносят в лист учета.

1. Какие из следующих уравнений являются иррациональными.
1 вариант:2 вариант:
а) х + = 2а) = 1
б) х = 1 + хб) х² – 2 х + 4 = 0
в) у + = 2в) у² – у = + 2
г) = 3г) + = 3
д) у² – 3у = 4д) z = 1 +
(а, в, г)(а, г, д)
2. Является ли число х0 корнем уравнения:
, х0 = 4, х0 = 2
(нет)(да)
3. Найти ОДЗ переменной в выражении:
(х ≥ 3)(х ≥ 2)
4. Решите уравнения:
а)= 4а) = 3
б) = -2б) + 2 = 0
( а) 16; б) нет корней)( а) х = 27; б) нет корней)

IV. Систематизация теоретического материала.

Учебная серия «Классификация иррациональных уравнений».

Цель: привести в систему знания по типам и методам решения иррациональных уравнений.

На доске написаны уравнения данной серии и на слайде презентации представлена системно-обобщающая таблица. У каждого учащегося имеется такая же схема. Определяя тип и методы решения уравнений, учащиеся заполняют свою схему. Открываются правильные ответы, учащиеся меняются схемами, проверяют, объясняют друг другу ошибки, количество верных ответов заносят в лист учета знаний соседа.

Определите методы решения следующих уравнений:

  1. х – 1=;
  2. = х ;
  3. х – 3 + 2 + 0 ;
  4. (4х – х2 – 3)= 0 ;
  5. ;
  6. = х;
  7. — 3= 10 ;
  8. = 0;
  9. +=;
  10. = х² – 4
  11. += 1;
  12. 2 – х + 3= 4.

V. Блоки уравнений.

На сравнение, обобщение, раскрытие идей решения некоторых уравнений, предупреждение возможной ошибки. Отвечающие учащиеся правильные шаги Р заносят в лист учета знаний.

1 Вопрос. О чем идет речь?

? Особенное !
  1. = -1;
  2. = а;
  3. = 2

Ответ: 1, 2, 4 – простейшие иррациональные уравнения, решаются по определению арифметического корня.

3 – простейшее иррациональное уравнение с параметром.

Вопрос. При каких значениях параметра а уравнение имеет решение?

2.

? Особенное !
  1. 2= х +2;
  2. = х;
  3. + 4 = 2х;
  4. = 5 – х.

Вопрос. Что объединяет эти уравнения?

Ответ: Методы решения I и II .

Вопрос. К каким уравнениям сводится решение данных уравнений после применения этих методов?

Ответ: К квадратным уравнениям.

Вопрос. Какое уравнение особенное?

Ответ: №4. Под знаком квадратного корня полный квадрат разности (х – 3)².

А по формуле = получается уравнение с модулем = 5 – х. Решение полученного уравнения с объяснением у доски.

3.

? Лишнее, но !
  1. = -2;
  2. +

Вопрос. О чем говорит этот блок уравнений?

Ответ: №3 не иррациональное уравнение, следовательно, лишнее. Но все эти уравнения не имеют корней, следовательно, они равносильные.

Вопрос. Объясните, почему уравнение № 4 не имеет решений.

Вопрос. Объясните, почему уравнение № 3 не имеет решений.

4.

? Можно!
  1. 4 = 20
  2. 6х2 + 12 = 3
  3. (х – 3)

? Нельзя!

Что бы это означало? Найдите лишнее уравнение и раскройте идею решения.

Вопрос. Что можно делать?

Вопрос. Что нельзя?

Вопрос. К чему может привести это преобразование?

Решить уравнение № 3 на доске и в тетрадях. (ответ: х1=1; х2 = 3)

VI. Дифференцированная самостоятельная работа в виде тестирования.

Четыре варианта карточек с выбором правильного ответа из четырех предложенных.

  1. Решить уравнение.
  2. Найти сумму (произведение) корней.
  3. Укажите промежуток, которому принадлежат корни уравнения.

Листы с решениями учащиеся сдают учителю. Сверяют свои ответы с правильными, записанными на доске или на слайде. Заносят результаты в лист учета знаний.

VII. Подведение итогов.

ОценкаКоличество правильных ответов
«5»Больше 28.
«4»25–28.
«3»19–24.
«2»Меньше или равно 18.

По шкале оценок каждый учащийся ставит себе предварительную оценку в лист учета знаний. После проверки учителем самостоятельной работы, итоговая оценка будет сообщена на следующем уроке.

VIII. Отчет учащихся об индивидуальном домашнем задании.

(Решение уравнений ученики записывают на перемене перед началом урока на откидных досках или готовят слайд презентации)

Решение иррациональных уравнений методом введения новой переменной.

1) 2х² – 6х + + 2 = 0

у = у ≥ 0

у²= х² -3х + 6, х2- 3х = у²- 6, 2х²- 6х = 2у² – 12,


источники:

http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye

http://urok.1sept.ru/articles/645568