Иррациональные уравнения и неравенства на егэ

Иррациональные уравнения и неравенства на егэ

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч 2 . Скорость вычисляется по формуле , где l — пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость 100 км/ч. Ответ выразите в км/ч 2 .

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

км/ч 2 .

Если его ускорение будет превосходить найденное, то, проехав один километр, гонщик наберёт большую скорость, поэтому наименьшее необходимое ускорение равно 5000 км/ч 2 .

При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону где м – длина покоящейся ракеты, км/с – скорость света, а – скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 4 м? Ответ выразите в км/с.

Найдем, при какой скорости длина ракеты станет равна 4 м. Задача сводится к решению уравнения при заданном значении длины покоящейся ракеты м и известной величине скорости света км/с:

км/с.

Если скорость будет превосходить найденную, то длина ракеты будет менее 4 метров, поэтому минимальная необходимая скорость равна 180 000 км/с.

Здравствуйте! Возможно, задам крайне тупой вопрос, но.

Почему с измеряется в км/с, а «эль» в м, а в формулу подставляем без перевода к единой СИ?

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом часто получается, что одни величины измеряются, скажем, в метрах (длина трубы), другие в сантиметрах (диаметр трубы), третьи — в миллиметрах (толщина стенок трубы). Это, конечно, усложняет жизнь тем, что приходится помнить, что и в каких единицах входит в формулу, но зато не нужно каждый раз 2 метра переводить в 2000 миллиметров.

А Вам не кажется,что 18000 км/с как-то слишком много?Мы ещё не научились летать со скоростью света

Всё в порядке: скорость света 300 000 км/с, а эта — меньше. Теоретически вполне возможно.

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле где км — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километров? Ответ выразите в метрах.

Задача сводится к решению уравнения при заданном значении R:

м.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины R и L, выраженные в километрах, а h, выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: В формуле, приведённой в задании, коэффициент 500 как раз отражает, то что все величины, за исключением h, выражены в километрах.

В задаче все известные величины выражены в километрах. Если h=1,25 км, то в метрах это будет величина, равная 1250.

По условию данная формула справедлива для значений высот, выраженных в метрах.

Я согласна с Евгением Гудисом из Нижнего Новгорода — мы подставляем в формулу 6400 КМ, справа тоже 4КМ, возводим в квадрат, получаем слева КМ, а справа 16 КМ в квадрате! Откуда берутся метры в ответе.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины и выраженные в километрах, а выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: В формуле, приведённой в задании, коэффициент 500 в знаменателе как раз отражает то, что все величины, за исключением выражены в километрах.

Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле где км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?

Задача сводится к решению уравнений и при заданном значении R:

Следовательно, чтобы видеть горизонт на более далеком расстоянии, наблюдателю нужно подняться на метра.

Примечание Дмитрия Гущина.

Внимательный читатель заметит, что в условии задачи радиус Земли и расстояние до горизонта выражены в километрах, а рост человека — в метрах. В этих единицах их требуется подставлять в формулу. В этом нет ошибки: за согласование единиц отвечает коэффициент 500. Если бы в этой формуле все длины были выражены в километрах, она выглядела бы так: Но в таком виде формула менее удобна, поскольку при каждом вычислении рост человека необходимо переводить в километры. Вот почему иногда в физике или технике формулы выводят так, чтобы величины в них были выражены хоть и в несогласованных, но удобных для вычислений единицах.

Приведем пример из школьного курса физики. Когда необходимо вычислить электрическое сопротивление проводника известной длины и поперечного сечения, используют формулу Удельное сопротивление ρ в таблицах физических величин приводится в Поэтому чтобы сопротивление было в омах, длину l подставляют в формулу в метрах, а сечение S — в квадратных миллиметрах (но не в квадратных метрах, как могло бы показаться неопытному читателю). Подумайте, почему принято именно так.

решение иррациональных уравнений и неравенств
материал для подготовки к егэ (гиа) по алгебре (11 класс)

при подготовке к ЕГЭ материал «иррациональные уравнения и неравенства «являются необходимым материалом для успешной сдачи экзамена по математике в 11 классе

Скачать:

ВложениеРазмер
решение иррациональных уравнений и неравенств 2 части ЕГЭ665.5 КБ

Предварительный просмотр:

уравнения и неравенства

  1. Иррациональные уравнения:
  • Решение иррациональных уравнений стандартного вида.
  • Решение иррациональных уравнений смешанного вида.
  • Решение сложных иррациональных уравнений.
  1. Иррациональные неравенства:
  • Решение иррациональных неравенств стандартного вида.
  • Решение нестандартных иррациональных неравенств.
  • Решение иррациональных неравенств смешанного вида.

I. Иррациональные уравнения

Иррациональным называется уравнение, в котором переменная содержится под знаком корня.

Решаются такие уравнения возведением обеих частей в степень. При возведении в четную степень возможно расширение области определения заданного уравнения. Поэтому при решении таких иррациональных уравнений обязательны проверка или нахождение области допустимых значений уравнений. При возведении в нечетную степень обеих частей иррационального уравнения область определения не меняется.

Иррациональные уравнения стандартного вида можно решить пользуясь следующим правилом:

Решение иррациональных уравнений стандартного вида:

а) Решить уравнение = x – 2,

2x – 1 = x 2 – 4x + 4, Проверка:

x 2 – 6x + 5 = 0, х = 5, = 5 – 2,

x 2 = 1 – постор. корень х = 1, 1 – 2 ,

Ответ: 5 пост. к. 1 -1.

б) Решить уравнение = х + 4,

в) Решить уравнение х – 1 =

х 3 – 3х 2 + 3х – 1 = х 2 – х – 1,

х 3 – 4х 2 + 4х = 0,

х = 0 или х 2 – 4х + 4 = 0,

г) Решить уравнение х – + 4 = 0,

х + 4 = , Проверка:

х 2 + 8х + 16 = 25х – 50, х = 11, 11 – + 4 = 0,

х 2 – 17х + 66 = 0, 0 = 0

х 1 = 11, х = 6, 6 – + 4 = 0,

Решение иррациональных уравнений смешанного вида:

  • Иррациональные уравнения, содержащие знак модуля:

а) Решить уравнение =

x

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

или

б) Решить уравнение

, – +

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

  • Иррациональные показательные уравнения:

а) Решить уравнение

Сделаем обратную замену:

– ( ур-ние не имеет решений) x = 3.

б) Решить уравнение

Приведем все степени к одному основанию 2:

данное уравнение равносильно уравнению:

  • Иррациональное уравнение, содержащее иррациональность четной степени:

возведем обе части уравнения в квадрат

  • Иррациональное уравнение, содержащее иррациональность нечетной степени:

Решить уравнение

возведем обе части уравнения в куб

возведем обе части уравнения в куб

  • Иррациональные уравнения, которые решаются заменой:

а) Решить уравнение

Пусть = t, тогда = , где t > 0

Сделаем обратную замену:

= 2, возведем обе части в квадрат

б) Решить уравнение

Пусть = t, значит = , где t > 0

Сделаем обратную замену:

= 2, возведем обе части уравнения в четвертую степень

x + 8 = 16, Проверка:

в) Решить уравнение

Пусть = t, где t > 0

Сделаем обратную замену:

= 2, возведем обе части уравнения в квадрат

Решение сложных иррациональных уравнений:

  • Иррациональное уравнение, содержащее двойную иррациональность:

возведем обе части уравнения в куб

возведем обе части уравнения в квадрат

t 2 – 11t + 10 = 0,

Сделаем обратную замену: Проверка:

= 10, или = 1, x = ,

x = -пост. корень 0

  • Иррациональные логарифмические уравнения:

а) Решить уравнение lg3 + 0,5lg(x – 28) = lg

lg3 + 0,5lg(x – 28) = lg ,

Учитывая ОДЗ, данное уравнение равносильно системе:

б) Решить уравнение

IV. Иррациональные неравенства

Неравенства называются иррациональными, если его неизвестное входит под знак корня (радикала).

Иррациональное неравенство вида равносильно системе неравенств:

Иррациональное неравенство вида равносильно совокуп-ности двух систем неравенств:

Решение иррациональных неравенств стандартного вида:

а) Решить неравенство

Данное неравенство равносильно системе неравенств:

+ – +

Ответ: [1; 2) . 1 3 x

б) Решить неравенство

Данное неравенство равносильно двум системам неравенств:

в) Решить неравенство

Данное неравенство равносильно системе неравенств:

Ответ: нет решений

Решение иррациональных неравенств нестандартного вида:

а) Решить неравенство

Данное неравенство равносильно системе неравенств:

б) Решить неравенство

Данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств с помощью правила знаков при умножении и делении:

а) Решить неравенство

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

б) Решить неравенство (2x – 5)

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств способом группировки:

сгруппируем по два слагаемых

вынесем общий множитель за скобку

учитывая, что > 0 и правило знаков при умножении данное неравенство равносильно системе неравенств:

  • Иррациональное неравенство, содержащее два знака иррациональности:

Данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств заменой:

Пусть = t, тогда = , t > 0

Сделаем обратную замену:

возведем в квадрат обе части неравенства

Решение иррациональных неравенств смешанного вида:

  • Иррациональные показательные неравенства:

а) Решить неравенство

Нули функции: x 1 = 4; x 2 = – 1. –1 4 x

б) Решить неравенство 4 – 2 – 32

4 – 2 – 32, ОДЗ: x > 0

2 – 2 2 2 4 – 2 5 , выполним группировку слагаемых

2 (2 – 2) – 2 4 (2 –2)

(2 – 2) (2 – 2 4 ) , учитывая правило знаков и ОДЗ данное неравенство равносильно 2-м системам:

т.к. y = 2 t , то т.к. y = 2 t , то

  • Решение иррациональных логарифмических неравенств:

уч. ОДЗ данное нер-во равносильно системе нер-ств

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3


источники:

http://nsportal.ru/shkola/algebra/library/2019/07/10/reshenie-irratsionalnyh-uravneniy-i-neravenstv

http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye