Иррациональные уравнения и неравенства на егэ профиль

Иррациональные уравнения и неравенства на егэ профиль

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч 2 . Скорость вычисляется по формуле , где l — пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость 100 км/ч. Ответ выразите в км/ч 2 .

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения при известном значении длины пути км:

км/ч 2 .

Если его ускорение будет превосходить найденное, то, проехав один километр, гонщик наберёт большую скорость, поэтому наименьшее необходимое ускорение равно 5000 км/ч 2 .

При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону где м – длина покоящейся ракеты, км/с – скорость света, а – скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 4 м? Ответ выразите в км/с.

Найдем, при какой скорости длина ракеты станет равна 4 м. Задача сводится к решению уравнения при заданном значении длины покоящейся ракеты м и известной величине скорости света км/с:

км/с.

Если скорость будет превосходить найденную, то длина ракеты будет менее 4 метров, поэтому минимальная необходимая скорость равна 180 000 км/с.

Здравствуйте! Возможно, задам крайне тупой вопрос, но.

Почему с измеряется в км/с, а «эль» в м, а в формулу подставляем без перевода к единой СИ?

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом часто получается, что одни величины измеряются, скажем, в метрах (длина трубы), другие в сантиметрах (диаметр трубы), третьи — в миллиметрах (толщина стенок трубы). Это, конечно, усложняет жизнь тем, что приходится помнить, что и в каких единицах входит в формулу, но зато не нужно каждый раз 2 метра переводить в 2000 миллиметров.

А Вам не кажется,что 18000 км/с как-то слишком много?Мы ещё не научились летать со скоростью света

Всё в порядке: скорость света 300 000 км/с, а эта — меньше. Теоретически вполне возможно.

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле где км — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километров? Ответ выразите в метрах.

Задача сводится к решению уравнения при заданном значении R:

м.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины R и L, выраженные в километрах, а h, выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: В формуле, приведённой в задании, коэффициент 500 как раз отражает, то что все величины, за исключением h, выражены в километрах.

В задаче все известные величины выражены в километрах. Если h=1,25 км, то в метрах это будет величина, равная 1250.

По условию данная формула справедлива для значений высот, выраженных в метрах.

Я согласна с Евгением Гудисом из Нижнего Новгорода — мы подставляем в формулу 6400 КМ, справа тоже 4КМ, возводим в квадрат, получаем слева КМ, а справа 16 КМ в квадрате! Откуда берутся метры в ответе.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины и выраженные в километрах, а выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: В формуле, приведённой в задании, коэффициент 500 в знаменателе как раз отражает то, что все величины, за исключением выражены в километрах.

Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле где км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?

Задача сводится к решению уравнений и при заданном значении R:

Следовательно, чтобы видеть горизонт на более далеком расстоянии, наблюдателю нужно подняться на метра.

Примечание Дмитрия Гущина.

Внимательный читатель заметит, что в условии задачи радиус Земли и расстояние до горизонта выражены в километрах, а рост человека — в метрах. В этих единицах их требуется подставлять в формулу. В этом нет ошибки: за согласование единиц отвечает коэффициент 500. Если бы в этой формуле все длины были выражены в километрах, она выглядела бы так: Но в таком виде формула менее удобна, поскольку при каждом вычислении рост человека необходимо переводить в километры. Вот почему иногда в физике или технике формулы выводят так, чтобы величины в них были выражены хоть и в несогласованных, но удобных для вычислений единицах.

Приведем пример из школьного курса физики. Когда необходимо вычислить электрическое сопротивление проводника известной длины и поперечного сечения, используют формулу Удельное сопротивление ρ в таблицах физических величин приводится в Поэтому чтобы сопротивление было в омах, длину l подставляют в формулу в метрах, а сечение S — в квадратных миллиметрах (но не в квадратных метрах, как могло бы показаться неопытному читателю). Подумайте, почему принято именно так.

решение иррациональных уравнений и неравенств
материал для подготовки к егэ (гиа) по алгебре (11 класс)

при подготовке к ЕГЭ материал «иррациональные уравнения и неравенства «являются необходимым материалом для успешной сдачи экзамена по математике в 11 классе

Скачать:

ВложениеРазмер
решение иррациональных уравнений и неравенств 2 части ЕГЭ665.5 КБ

Предварительный просмотр:

уравнения и неравенства

  1. Иррациональные уравнения:
  • Решение иррациональных уравнений стандартного вида.
  • Решение иррациональных уравнений смешанного вида.
  • Решение сложных иррациональных уравнений.
  1. Иррациональные неравенства:
  • Решение иррациональных неравенств стандартного вида.
  • Решение нестандартных иррациональных неравенств.
  • Решение иррациональных неравенств смешанного вида.

I. Иррациональные уравнения

Иррациональным называется уравнение, в котором переменная содержится под знаком корня.

Решаются такие уравнения возведением обеих частей в степень. При возведении в четную степень возможно расширение области определения заданного уравнения. Поэтому при решении таких иррациональных уравнений обязательны проверка или нахождение области допустимых значений уравнений. При возведении в нечетную степень обеих частей иррационального уравнения область определения не меняется.

Иррациональные уравнения стандартного вида можно решить пользуясь следующим правилом:

Решение иррациональных уравнений стандартного вида:

а) Решить уравнение = x – 2,

2x – 1 = x 2 – 4x + 4, Проверка:

x 2 – 6x + 5 = 0, х = 5, = 5 – 2,

x 2 = 1 – постор. корень х = 1, 1 – 2 ,

Ответ: 5 пост. к. 1 -1.

б) Решить уравнение = х + 4,

в) Решить уравнение х – 1 =

х 3 – 3х 2 + 3х – 1 = х 2 – х – 1,

х 3 – 4х 2 + 4х = 0,

х = 0 или х 2 – 4х + 4 = 0,

г) Решить уравнение х – + 4 = 0,

х + 4 = , Проверка:

х 2 + 8х + 16 = 25х – 50, х = 11, 11 – + 4 = 0,

х 2 – 17х + 66 = 0, 0 = 0

х 1 = 11, х = 6, 6 – + 4 = 0,

Решение иррациональных уравнений смешанного вида:

  • Иррациональные уравнения, содержащие знак модуля:

а) Решить уравнение =

x

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

или

б) Решить уравнение

, – +

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

  • Иррациональные показательные уравнения:

а) Решить уравнение

Сделаем обратную замену:

– ( ур-ние не имеет решений) x = 3.

б) Решить уравнение

Приведем все степени к одному основанию 2:

данное уравнение равносильно уравнению:

  • Иррациональное уравнение, содержащее иррациональность четной степени:

возведем обе части уравнения в квадрат

  • Иррациональное уравнение, содержащее иррациональность нечетной степени:

Решить уравнение

возведем обе части уравнения в куб

возведем обе части уравнения в куб

  • Иррациональные уравнения, которые решаются заменой:

а) Решить уравнение

Пусть = t, тогда = , где t > 0

Сделаем обратную замену:

= 2, возведем обе части в квадрат

б) Решить уравнение

Пусть = t, значит = , где t > 0

Сделаем обратную замену:

= 2, возведем обе части уравнения в четвертую степень

x + 8 = 16, Проверка:

в) Решить уравнение

Пусть = t, где t > 0

Сделаем обратную замену:

= 2, возведем обе части уравнения в квадрат

Решение сложных иррациональных уравнений:

  • Иррациональное уравнение, содержащее двойную иррациональность:

возведем обе части уравнения в куб

возведем обе части уравнения в квадрат

t 2 – 11t + 10 = 0,

Сделаем обратную замену: Проверка:

= 10, или = 1, x = ,

x = -пост. корень 0

  • Иррациональные логарифмические уравнения:

а) Решить уравнение lg3 + 0,5lg(x – 28) = lg

lg3 + 0,5lg(x – 28) = lg ,

Учитывая ОДЗ, данное уравнение равносильно системе:

б) Решить уравнение

IV. Иррациональные неравенства

Неравенства называются иррациональными, если его неизвестное входит под знак корня (радикала).

Иррациональное неравенство вида равносильно системе неравенств:

Иррациональное неравенство вида равносильно совокуп-ности двух систем неравенств:

Решение иррациональных неравенств стандартного вида:

а) Решить неравенство

Данное неравенство равносильно системе неравенств:

+ – +

Ответ: [1; 2) . 1 3 x

б) Решить неравенство

Данное неравенство равносильно двум системам неравенств:

в) Решить неравенство

Данное неравенство равносильно системе неравенств:

Ответ: нет решений

Решение иррациональных неравенств нестандартного вида:

а) Решить неравенство

Данное неравенство равносильно системе неравенств:

б) Решить неравенство

Данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств с помощью правила знаков при умножении и делении:

а) Решить неравенство

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

б) Решить неравенство (2x – 5)

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств способом группировки:

сгруппируем по два слагаемых

вынесем общий множитель за скобку

учитывая, что > 0 и правило знаков при умножении данное неравенство равносильно системе неравенств:

  • Иррациональное неравенство, содержащее два знака иррациональности:

Данное неравенство равносильно системе неравенств:

  • Решение иррациональных неравенств заменой:

Пусть = t, тогда = , t > 0

Сделаем обратную замену:

возведем в квадрат обе части неравенства

Решение иррациональных неравенств смешанного вида:

  • Иррациональные показательные неравенства:

а) Решить неравенство

Нули функции: x 1 = 4; x 2 = – 1. –1 4 x

б) Решить неравенство 4 – 2 – 32

4 – 2 – 32, ОДЗ: x > 0

2 – 2 2 2 4 – 2 5 , выполним группировку слагаемых

2 (2 – 2) – 2 4 (2 –2)

(2 – 2) (2 – 2 4 ) , учитывая правило знаков и ОДЗ данное неравенство равносильно 2-м системам:

т.к. y = 2 t , то т.к. y = 2 t , то

  • Решение иррациональных логарифмических неравенств:

уч. ОДЗ данное нер-во равносильно системе нер-ств

Иррациональные уравнения

Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.

Чтобы решить иррациональное уравнение, необходимо:

  1. Преобразовать заданное иррациональное уравнение к виду: $√=g(x)$ или $√=√$
  2. Обе части уравнение возвести в квадрат: $√^2=(g(x))^2$ или $√^2=√^2$
  3. Решить полученное рациональное уравнение.
  4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Решите уравнение $√<4х-3>=х$. Если уравнение имеет более одного корня, укажите наименьший из них.

Обе части уравнение возведем в квадрат:

Получаем квадратное уравнение:

Перенесем все слагаемые в левую часть уравнения:

Решим данное квадратное уравнение устным способом, так как

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.

$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит

$х_1=1$ наименьший корень.

Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:

  1. Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
  2. Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$

Решить уравнение: $х-6=√<8-х>$

Возведем обе части уравнения в квадрат

В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение

Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.

Приводим подобные слагаемые:

Найдем корни уравнения через дискриминант:

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$1=1$, получили верное равенство, следовательно, корень нам подходит.

$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.


источники:

http://nsportal.ru/shkola/algebra/library/2019/07/10/reshenie-irratsionalnyh-uravneniy-i-neravenstv

http://examer.ru/ege_po_matematike/teoriya/irracionalnye_uravneniya