Иррациональные уравнения за 11 класс

Урок алгебры в 11-м классе по теме «Методы решения иррациональных уравнений»

Разделы: Математика

Цели и задачи урока:

Развивающие: Активизация мыслительной деятельности учащихся. Развитие познавательной активности и интереса к предмета.

Воспитательные: Развитие культуры математической речи при ответах на вопросы и при объяснении решения уравнений; зрительной памяти; внимательности и самостоятельности; творческого отношения к выполнению заданий.

Тип урока: Комбинированный.

Формы методы и педагогические приемы: Фронтальная беседа, комментирование решений, устная проверочная работа, создание проблемных ситуаций, дифференцированная самостоятельная работа, подготовка и защита плакатов с методами решения иррациональных уравнений, работа с учебником.

Оборудование: Магнитная доска, откидные доски, тетради, чистые листы, раздаточный материал (карточки с вариантами самостоятельной работ), плакаты с решениями иррациональных уравнений методом возведения в степень и замена переменных.

1. Организационный момент.
2. Работа с учебником, и устный опрос в форме фронтальной беседы.
3. Защита плакатов.
4. Устная проверочная работа.
5. Решение уравнений.
6. Самостоятельная работа.
7. Итоги урока.
8. Домашнее задание.

Работа с учебником: Учитель предлагает еще раз вспомнить понятие иррационального уравнения, примеры их решения (образцы в тексте), какими методами решали уравнения, какими понятиями при этом пользовались.

Устный опрос в форме фронтальной беседы с целью проверки теоретических знаний:

  1. Что такое уравнение? [Уравнение – это равенство двух алгебраических выражений].
  2. Что называется корнем уравнения? [Корнем уравнения называется, то значение переменной, при котором данное уравнение обращается в верное равенство].
  3. Что значит решить уравнение? [Решить уравнение – значит найти все его корни или доказать, что уравнение не имеет корней].
  4. Какие уравнения называются равносильными? [Два уравнения равносильны на множестве, если они имеют одни и те же корни из этого множества или не имеют корней на данном множестве].
  5. Какие уравнения называют иррациональными уравнениями? [Уравнения, содержащие переменную под знаком корня, называют иррациональными уравнениями].
  6. Каковы методы решения иррациональных уравнений? [Часто используемый прием решения иррациональных уравнений – это возведение в степень (чаще всего возведение в квадрат). Другой метод – это метод замены переменных].
№1 Метод возведения в степень.

Решить уравнение

Решение: I способ : Возведем обе части уравнения в квадрат.

Проверка: 1) х=0, то (неверно);

2) х=3, то (верно)

№2 Метод замены переменных.

Решить уравнение

Решение: Пусть t=

Значит, 2=

Ответ: 6

Плакаты ученики делали дома на ватмане. Прикрепив плакат на магнитной доске учащиеся поочередно защищают свой метод решения иррациональных уравнений.

Учащиеся задают вопросы докладчикам.

Почему при решении уравнения на плакате №1 в 1 способе поставлен всюду знак

(следствия), и в другом способе знак (равносильности)?[ Уравнение х 2 +5х+1=(2х-1) 2 имеет 2 корня – х2=0, х2=3, а уравнение имеет только один корень х=3, следовательно уравнения не равносильны и каждая следующая запись является следствием предыдущей в первом способе решения.

Во втором способе решения областью определения уравнения является множество чисел х0,5, а число х=3 принадлежит этому множеству, значит все переходы, равносильны.

2. Почему при решение уравнения не делали проверку корня?

[ Так как все переходы при решении уравнения равносильны, то проверка корня не требуется].

Устная проверочная работа: На откидной доске учителем заранее записаны задания

1. Является ли уравнение:

иррациональным?

2. Какие из чисел 5; 0;-3 являются корнями уравнений?

а) [x=0]

б) [x=5]

3. Решите уравнения

1) [x=83]

2) [x=±5]

3) [O]

4) [x=±3]

5) х-6 [x=9]

6) [x=5]

7) lg([-12)=0, [O]Ответы и комментарии:

Нет, потому что в нем переменная х не содержится под знаком корня или дробной степени.

Каждое из чисел надо подставить вместо переменной х в каждое из уравнений. Если равенство будет равным, то число является решением уравнения, если равенство неверно, то число является решением иррационального уравнения.

Возведем обе части уравнения в квадрате

х-2=81х=83 и выполним проверку (верно).

х 2 =25х=±5

Уравнение решений не имеет, т.к. корень четной степени не может быть отрицательным числом.

Возведем обе части уравнения в третью степень 1-х 2 =-8; х 2 =9; х=±3.

Корень уравнения легко найти подбором, это число 9, т.к. 9-6+9=0.

Возведем обе части уравнения в квадрат и решим показательное уравнение

Если то х=11, тогда lg(-1), чего быть не может, т.к. логарифмы отрицательных чисел не определены.

Решение иррациональных уравнений на доске и в тетрадях.

На доске заранее учителем записаны следующие уравнения:

1. ;

2.

3.

4. ;

Решение: Обе части уравнения возведем в квадрат и учтем область определения уравнения, при этом будем использовать знак .

Вопрос учителя: Почему область определения уравнения записана не равенством х>11, а не х11? [При х=11 знаменателем дроби равен 0, а на 0 делить нельзя].

2.

Решение: Так как под знаком записаны одинаковые выражения, то удобно применить метод замены.

Пусть тогда Решая квадратное уравнение относительно переменной Z, получим Z1=5; Z2=-2. Учитывая область определения уравнения х 2 +5х+1>0, заметим, что при Z=5 25+25+1>0 (да), а при Z=-2 4-10+1>0 (неверно), то Z2=-2 посторонний корень. Вернемся к переменной х,

х1=3; х2=-8.

Проверка: х=3, (верно)

х=-8, (верно)

3.

Решение: Решим уравнение методом замены переменных.

Пусть тогда Чтобы составить вопрос уравнения с переменными и , возведем обе части уравнений в квадрат 3х+1=u 2 и 3х-6= 2 , заметим, что 3х+1-3х+6=7, т.е. u 2 — 2 =7. Получили систему уравнений относительно переменных u и , решаем ее:

Возвращаемся к переменной х.

; (или )

3х+1=163х=15х=5

(3х-6=93х=15х=5)

Проверка:

Комментарий учителя: некоторые учащиеся выбрали другой способ решения – возведения в квадрат, но он приводит к громоздким вычислениям, поэтому метод замены в данном уравнении более удачный.

4.

Решение: Уединим в левой части уравнения и возведем обе части уравнения в квадрат.

Д=19 2 -4*84=25; х1= х2= 7.

х=12, (неверно)

х=7, (верно)

х=12 – посторонний корень

5.

Решение: Будем использовать метод возведения обеих частей уравнения в нечетную третью степень, при котором посторонние корни не появляются.

6.

Решение: Обе части уравнения возведем в квадрат и запишем область определения данного уравнения.

На данном этапе урока наблюдалась ошибка при возведении двучлена в квадрат. Например: (х-7) 2 =х 2 -49, а надо (х-7) 2 =х 2 -14х+49. При выборе метода решения в уравнении №4 многие предпочитают метод возведения в квадрат, что не рационально.

Каждый учащийся получает карточку с одним из трех вариантов. Первый вариант для слабоуспевающих учеников, второй и третий для более успешных учащихся.

Решите уравнения: а)

б)

в) х-

Решите уравнения: а)

б)

в)

Решите уравнения: а)

б)

в)

Решения уравнений из самостоятельной работы. См. в приложении №1.

1) Перечислите методы решения иррациональных уравнений.
2) В чем заключается смысл каждого метода?
3) Оценки за урок.

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Тема: Иррациональные уравнения 11 класс

Просмотр содержимого документа
«Тема: Иррациональные уравнения 11 класс»

Тема: Иррациональные уравнения
Цели урока:

1. Обобщить и систематизировать знания учащихся по данной теме, повторить методы решения иррациональных уравнений, познакомить с новыми нестандартными методами решения иррациональных уравнений, показать исторический характер теории иррациональности, проверить уровень сформированности умений и навыков учащихся по изучаемой теме.

2. Развивать операции мышления (обобщение, умение выделять главное, анализировать), внимание, навыки сотрудничества, чувство времени.

3. Воспитание ответственного отношения к изучению предмета, самостоятельности, познавательной активности, стремления к самосовершенствованию.

Тип урока:
Обобщение и систематизация ранее изученного материала

I Организационный момент.
Сообщение темы и цели урока.
Здравствуйте, ребята. Добрый день, уважаемые учителя, приглашаю Вас на урок математики в 11 классе “Иррациональные уравнения”.
Эйнштейн говорил так: “Мне приходится делить время между политикой и уравнениями. Однако, уравнения, по-моему, гораздо важнее. Политика существует для данного момента, а уравнения будут существовать вечно”.
Как Вы знаете, прославился он именно уравнением, названным “Уравнение Эйнштейна”. Вот и мы займемся уравнениями. Обобщим знания по теме “Иррациональные уравнения”, повторим методы решения уравнений, алгоритмы решения, этими методами, познакомимся с новыми методами.
Запишите в тетради число, тему урока.

На ваших партах лежат рабочие карты, подпишите их.
Рабочая карта ученика 11 класса ________________________
Теория
Кроссворд Метод “пристального взгляда” Метод возведение в степень, равную показателю корня Метод введения новой переменной ИТОГ

В них вы будете отмечать успешность выполнения заданий символами:
“!” – владею свободно
“+” — могу решать, иногда ошибаюсь
“-” — надо еще поработать

2. Повторение и обобщение изученного материала.

2.1. Основные вопросы теории открытия иррациональности

А сейчас небольшая историческая справка (выходит учащийся и рассказывает наизусть):

История иррациональных чисел восходит к удивительному открытию Пифагорийцев ещё в VI веке до н.э.. А началось все, с простого, казалось бы, вопроса — каким числом выражается длина диагонали квадрата со стороной 1?

Пифагорийцы доказали, что — нельзя выразить отношением некоторых целых чисел m и n. — по их мнению вообще не было числом. Открыв новый математический объект, они пришли в полное замешательство. В основе всеобщей гармонии мира, считали они, должны лежать целые числа и их отношения. Никаких других чисел они не знали. И вдруг эта гармония рушится — существуют величины, которые отношением целых чисел, в принципе — не являются.

В переводе с латыни «irrationalis» — «неразумный». Любопытно, что в средневековой Европе наряду с «irrationalis» в ходу был ещё и другой термин «surdus» — «глухой» или «немой». Судя по такому названию, математикам средневековья иррациональные числа представлялись чем-то настолько «неразумным», что «ни сказать, ни выслушать». Удивление и досада, с которыми древние математики в начале восприняли иррациональные числа, впоследствии сменились интересом и пристальным вниманием к новым математическим объектам.

Ну а в наше время необходимость изучения решения иррациональных уравнений очевидна. Иррациональным уравнением выражаются формулы, описывающие многие физические процессы:

1 и 2 космические скорости;

среднее значение скорости теплового движения молекул;

период радиоактивного полураспада и другие.

История развития теории иррациональности знает много ученых – исследователей. Назовем некоторых из них, отвечая на вопросы теории, которая является фундаментом, для решения иррациональных уравнений.

Первый кроссворд.
1. Что требуется для полученных значений переменной при решении иррациональных уравнений? (проверка)
2. Способ, которым проводится проверка решений иррациональных уравнений (подстановка)
3. Как называется знак корня? (радикал)
4. Сколько решений имеет уравнение х2 = а, если а 5. Как называется уравнение, в котором под знаком корня содержится переменная? (иррациональное)
6. Как называется корень второй степени? (квадратный)
Получилось имя Евклид. Евклид – это великий ученый, он жил в 3 веке до нашей эры в Древней Греции. Известно, что он был приглашен в Александрию царем Птолемеем I для организации математической школы. Он был человеком мягкого характера, очень скромного, но независимого. Он сказал, что познание мира ведет к совершенствованию души. Предлагаю эти слова взять эпиграфом нашего урока. Необходимость введения иррациональных чисел была описана в работе Евклида, по которой потом занимались все творцы современной математики:
Декарт и Ферма, Ньютон и Лейбниц, Колмогоров и Понтрягин.
Как называлась эта древняя книга, которая оказала наибольшее влияние на развитие европейской цивилизации? НАЧАЛА.
Именно в этом труде Евклид впервые заявил о необходимости введения новых неизведанных чисел.

Понятие иррациональности ассоциируется с изображением корня. Греческие математики вместо слов “извлечь корень” говорили “найти сторону квадрата по его заданной величине (площади)”. Знак корня впервые появился в 1525 году. За это время его изображение менялось. Кто ввел это изображение?
Об этом мы узнаем, ответив на следующие вопросы.

Второй кроссворд.
1. Сколько решений имеет уравнение х2=0. (одно)
2. Корень какой степени существует из любого числа? (нечетной )
3. Как называется корень третьей степени? (кубический)
4. Сколько решений имеет уравнение х2=а, если а 0? (два)
5. Как называется корень уравнения, который получается в результате неравносильных преобразований? (постороннний)
6. Корень, какой степени существует только из неотрицательного числа? (четной)
Итак, впервые изображение корня ввёл Декарт, французский ученый. Им положено начало исследования важных свойств алгебраических уравнений.

Третий кроссворд.
Кто же ввел современное изображение корня? Ответим на следующие вопросы.
1. Как называется равенство двух алгебраических выражений? (уравнение)
2. Как называют значение переменной, при котором уравнение обращается в верное числовое равенство (корень)
3. Какая черта личности поможет при решении иррациональных уравнений? (трудолюбие)
4. Какой должен быть взгляд на уравнения, чтобы, не вычисляя сказать ответ? (пристальный)
5. Как называют уравнения, если они имеют одни и те же корни или не имеют корней вообще? (равносильные)
6. Как называется иррациональное выражение, содержащее противоположное арифметическое действие? (сопряженное)
Это Ньютон – английский физик, открывший основные законы природы, законы Ньютона. Он ввёл современное изображение корня.
Мы повторили теорию решения иррациональных уравнений, которая является фундаментом для познания мира.

2.2. Основные методы решения иррациональных уравнений.

Иррациональные уравнения можно решать различными методами.
1. Какими основными методами решаются иррациональные уравнения?
(Метод возведения в степень, равную показателю корня, метод пристального взгляда, метод введения новой переменной)
2. Расскажите алгоритм решения методом возведения в степень, равную показателю корня.
1) Возведём обе части уравнения в степень, равную степени корня.
2) Решим полученное уравнение.
3) Выполним проверку.
3. Расскажите алгоритм решения методом введения новой переменной.
1) Введём новую переменную.
2) Решим полученное уравнение.
3) Найдем значение искомой переменной.
4) Выполним проверку.
4. Какой этап содержат все эти методы?
(Проверку)
5. Какой метод используется при решении иррациональных уравнений другими методами?
(Метод возведения в степень, равную степени корня)
6.Какой метод предполагает устное решение?
(Метод “пристального взгляда”?)
7. На каких свойствах иррациональных выражений основан этот метод?
(Значение арифметического корня четной степени есть величина неотрицательная, а значит сумма, произведение и частное таких выражений будет величина неотрицательная)

2.3. Решение заданий методом пристального взгляда.

Ряд иррациональных уравнений можно решить методом ,,пристального взгляда,, суть которого заключается в очевидности корней или их явного отсутствия по причине разногласия с ОДЗ. Например:

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. ;

8. ;

9. ;

10. .

Развиваем алгебраическую зоркость. На переносной доске записано решение иррационального уравнения, в котором допущена ,,стандартная,, ошибка. Найдите её.

1. Решить уравнение:

Ошибка. Ученик возвел в квадрат формально. На области обе части уравнения не определены.

Ответ: нет решений.

2.4 Методы решения иррациональных уравнения.

1) Метод приведения уравнения к простейшему виду путем возведения обеих частей уравнения в степень, равную показателю корня (радикала).

проверка:

11-8=3,

, 11-корень

Вывод: при возведении обеих частей уравнения в четную степень не может происходить потери корней (могут быть получены посторонние корни). Следовательно, решая уравнения достаточно найти все корни уравнения, а затем исключить посторонние. В этом случае проверка является обязательным элементом решения.

2)Метод уединения корня.

Удобно ли проводить проверку, если корни дробные или иррациональные числа? Нет. Тогда, как же лучше поступить в таком случае?

В этом уравнении лучше сначала найти область допустимых значений, т.к. подкоренные выражения просты для решения.

Метод введения новой переменной (метод подстановки).


источники:

http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye

http://multiurok.ru/files/tema-irratsionalnye-uravneniia-11-klass.html