Иррациональные уравнения задания для 9 класса

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Зачет по иррациональным уравнениям для учащихся 9-х классов физико-математического профиля

Разделы: Математика

Решение иррациональных уравнений входит в стандарт общего образования, однако, все учителя математики знают, какой нелегкой является задача качественного обучения учеников решению иррациональных уравнений. Далеко не каждый ученик (а чаще в классе их вообще единицы) способен осознать и неукоснительно соблюдать тождественный переход от иррационального уравнения к системе рациональных условий. Ну а если решать иррациональные уравнения без соблюдения эквивалентных переходов, то, скорее всего, возникнут посторонние корни. Многие ученики ошибочно думают, что при решении иррациональных уравнений достаточно учесть область допустимых значений уравнения. Если же уравнение содержит несколько радикалов, у учащихся могут возникнуть затруднения в методах решения таких уравнений. Учитывая сложность восприятия учащимися данной темы, многие учителя рекомендуют (а иногда и просто требуют) выполнять проверку корней подстановкой в уравнение. Это, конечно, выход, если уровень подготовки учащихся невысок, уравнение не слишком сложное, корни рациональные, и задание не требует полного оформления решения, нужно дать только ответ (например, задачи типа В в ЕГЭ по математике).

В профильных же математических или физико-математических классах, такой подход неприемлем. Ученики поступали в профильные классы с целью получить глубокие знания, позволяющие им справляться с задачами повышенного уровня, к которым относятся и иррациональные уравнения. При обучении необходимо каждый раз при решении иррационального уравнения проговаривать логику решения, которая ведет к выписыванию системы рациональных условий. При решении каждого уравнения нужно обсуждать необходимость указания условия неотрицательности левой и правой частей уравнения перед возведением его в четную степень. А после возведения – обсуждать необходимость учета области допустимых значений уравнения. Нужно приучить ребят не бездумно использовать “схему решения”, а осознавать необходимость записи условий тождественного перехода при решении иррациональных уравнений.

В более сложных уравнениях, содержащих два и более радикала, радикалы разных степеней, особое внимание стоит уделить не только методам решения, но и наиболее эффективным способам решения. Например, чтобы избежать наложения условий тождественного перехода на разность радикалов при возведении в квадрат, нужно посоветовать перегруппировать уравнение таким образом, чтобы в левой и правой частях уравнения стояли неотрицательные выражения или суммы радикалов.

В профильных классах необходимо научить ребят решать сложные иррациональные уравнения методом замены, при этом не забыть обратить внимание на ограниченность множества значений радикалов четной степени.

Уравнения, содержащие двойные радикалы часто приводят с помощью замены переменной к полному квадрату под знаком квадратного корня, что неизбежно приведет к появлению модуля.

В профильных классах обязательным будет и обучение учащихся решению уравнений, представляющих собой произведение сомножителей, один из которых содержит переменную под знаком радикала четной степени. Такие уравнения достаточно часто предлагаются в качестве задания С3 в ЕГЭ по математике. Типичная ошибка многих учащихся при решении уравнений такого типа заключается в том, что они забывают проверить на ОДЗ корни сомножителя, не содержащего радикал. Именно этим и определяется повышенный уровень сложности этих уравнений.

Изучение решений иррациональных уравнений начинается в 9-х классах. Считаем, что именно в 9-ом классе учащиеся профильных классов должны получит прочное усвоение логики решения иррациональных уравнений, приемов и методов их решения, навыков эффективного выбора стратегии решения. Очевидно, качество обучения в определенной степени зависит от качественной проверки знаний, умений и навыков учащихся. Идеальным является такой вид контроля ЗУН, при котором будут проверяться все элементы обучения, задания расположены в порядке возрастания сложности, а набор заданий обеспечит “слабому” ученику, но старавшемуся усвоить этот непростой учебный материал, “уверенную тройку”, ну а “сильный” ученик сможет продемонстрировать свои знания на “отлично”. При этом хорошо бы иметь большое количество вариантов данного вида контроля знаний, ведь учителю важно проверить знания каждого ученика, а не двоих – троих в нескольких экземплярах. Это в идеале. А на деле, часто учитель просто не имеет достаточно времени для методической работы по составлению качественной зачетной работы по каждой теме, тем более работая в профильных классах (нужно составлять практически все работы для контрольных мероприятий). Кроме того, проверить работу класса в восьми вариантах, займет значительно больше времени, чем в двух. И эти обстоятельства мешают учителю качественно контролировать знания, умения и навыки учащихся.

Учитывая важность и сложность обучения иррациональным уравнениям в классах физико-математического профиля, мы предприняли попытку создания качественного продукта по контролю ЗУН учащихся по иррациональным уравнениям. Его можно условно назвать “Зачет по иррациональным уравнениям”. Зачетная работа разработана в 16-ти вариантах, каждый содержит по 8 уравнений разного типа: от простого к сложному. Все варианты одинаковой сложности, проверяют одни и те же элементы обучения. Работа рассчитана на 1 академический час. Однако при полном оформлении решения каждого уравнения она может занять большее количество времени. Чтобы сократить время на выполнение работы и упростить проверку предлагается провести этот зачет в полутестовой форме. Т.е. учащимся выдается двойной лист для черновика, на котором (и это обязательно оговаривается учителем перед началом работы) ученик обязательно должен показать логику решения (систему тождественного перехода, при необходимости ОДЗ, замену переменных и пр.). Простые выкладки можно не выполнять, проверять условия устно, сразу записывать ответ. Ответы ученики записывают в бланк ответов и сдают вместе с черновиком учителю. С учетом большого числа вариантов тестовый контроль знаний не повлияет на качество проверки, кроме того при проверке учитель обязательно просматривает черновик. Именно просматривает, а не проверяет. Если все схемы решения выписаны правильно, а ответ в бланке верный, значит это задание выполнено безошибочно. Мы тщательным образом подбирали примеры так, чтобы верный ответ не был получен случайно, чтобы условие тождественного перехода влияло на отбор корней. В некоторых заданиях требуется записать сумму полученных корней. Сделано это намеренно. Это приучает учащихся внимательно читать условие, осознавать и понимать его. Зачастую этим условием мы проверяли, не произошла ли потеря решения (например, при “сокращении” уравнения на переменную величину).

Таким образом, мы предлагаем качественный, на наш взгляд, “Зачет по иррациональным уравнениям” для учащихся 9-х классов математического и физико-математического профилей. В приложении представлены 16 вариантов зачета, таблица с ответами, а также образцы бланков для записи ответов.

Данная методическая разработка прошла неоднократную апробацию в классах физико-математического профиля ГБОУ Лицей №1523, получила высокую оценку коллег, многие их которых используют ее в своей педагогической деятельности. Можно с уверенностью сказать, что данный вид контроля настраивает учащихся на серьезную проработку сложной темы и обеспечивает качественный контроль знаний, умений и навыков по иррациональным уравнениям.

Решение иррациональных уравнений в 9 классе
презентация урока для интерактивной доски по алгебре (9 класс) по теме

Материал содержит план-конспект урока в 9 классе по теме «Решение иррациональных уравнений » Тип урока- урок- практикум.Цель урока- подготоква учащихся к ГИА в новой форме. К плану прилагается презентация к уроку.

Скачать:

ВложениеРазмер
irrac.ur-ya.doc99 КБ
irrac_uravneniyaprezentaciya_microsoft_office_powerpoint.pptx476.91 КБ

Предварительный просмотр:

«Решение иррациональных уравнений»

Учитель: Маслова Г.Ю.

Решение иррациональных уравнений

Выработать навык в решении простейших иррациональных уравнений и записи ответов в бланках ГИА;

Сформировать умение в решении иррациональных уравнений методом замены переменной и записи решения в бланках С ГИА;

Воспитывать внимание, аккуратность, терпимость по отношению к поступкам и убеждениям одноклассников.

Тип урока : урок-практикум

I. Организационный момент. Сообщение темы и цели урока.

II. Повторение. Теоретический опрос.

1.Какое уравнение называется иррациональным?

2.В чем состоит основная идея решения иррационального уравнения?

3.Какие два основных приема решения иррациональных уравнений вам известны?

4.Записать на доске равносильные переходы при решении типовых иррациональных уравнений.

Учитывая, что подход к решению уравнений с корнями любой четной степени одинаков (а именно о таких уравнениях мы сегодня и говорим), будем говорить об уравнениях с квадратными корнями.

III. Самостоятельная работа по изученному материалу

Решить уравнение, выбрать верный вариант ответа.

Перечислить варианты правильных ответов

Отметить варианты верных ответов в бланке АВ.

Напомнить, что бланк заполняется только в прямоугольнике 4х8.

Проверить справедливость заполнения бланков. Бланки собрать.

Перейдем к решению более сложных задач. Решение уравнений методом замены. Задание такого уровня может встретиться во второй части заданий ГИА. Поэтому оформлять решение будем в бланке С2 (на мультимедийной доске).

Что сделать, если бланка не хватает?

х 2 -х+√х 2 -х+9=3 √x 2 -x+9=3+x-x 2 √x 2 -x+9=-(x 2 -x-3)

t 2 -12+t=0 t 2 +t-12=0 t=-4 t=3

√x 2 -x+9=3 x 2 -x+9=9 x 2 -x=0 x(x-1)=0 x=0

Запись слова «ответ» — обязательна.

Замена в решении уравнений не всегда бывает столь очевидна. Сначала нужно выполнить тождественные преобразования, особое внимание уделить равносильности переходов. Равносильность нарушается при применении формул, выражающих свойства корня.

На доске: объяснить изменение ОДЗ. Исправить запись, чтобы переход был равносильным.

√f(x)* √g(x)= √f(x)* g(x) Расширение ОДЗ

. f(x)* √g(x)= √ f 2 (x)* g(x), . f(x)≥0

При решении уравнений с применением этих формул особенно строго надо следить за изменением ОДЗ уравнения.

Предварительное задание 3.

Внести множитель под знак корня. Указать ОДЗ выражения.

х 2 *√3/х= √3х 4 /х=√3х 3 , х>0

х*√3/х 2 = √3х 2 /х 2 =√3, х>0

Решим уравнения, где используются данные преобразования.

Два ученика к доске.

1 ученик с объяснением

√(х+1)/(х-2)=2 x 2 -x-2=4 x 2 -x-6=0 x=3 x=2

  1. ученик (самостоятельно) с последующей проверкой.

√(х+1)/(х-2)=1 x 2 -x-2=1 x 2 -x-3=0 x=(1±√13)/2

Представляю для обсуждения следующее уравнение

Заметим, что перед корнем есть множитель с переменной. Означает ли это, что применим тот же метод решения. Внесение множителя под знак корня не приводит к замене и не упрощает решения.

Какие иные предложения по решению будут?
1) Найдем ОДЗ уравнения

2)Воспользуемся формулой корня из произведения и частного

3)Заполним слайд 8

Дальше возможен вариант 1 способа (с модулями)

√|x-2|=10+х x-2=10+x x=-4 x=-4

Работаем, как в предыдущем примере.

ОДЗ разобьем на 2 промежутка и решим уравнение

IV. Подведем итог урока.

  1. Мы повторили решение типовых иррациональных уравнений с внесением результата в бланк ответа АВ.
  2. Рассмотрели метод замены в решении иррациональных уравнений и оформление бланка ответов части С.
  3. Рассмотрели решение иррациональных уравнений с применением формул, выражающих свойства квадратных корней, где необходимо более тщательно следить за изменением ОДЗ уравнения, и более рациональным является раздробление ОДЗ на части.
  4. На сколько вы это усвоили, будет понятно по выполнении вами домашнего задания.

(Раздать карточки с домашним заданием)

На следующем уроке мы разберем решение уравнений с кубическими корнями и нестандартные методы решения, основанные на свойствах функции корня и теореме о единственности корня (повторить).


источники:

http://urok.1sept.ru/articles/609137

http://nsportal.ru/shkola/algebra/library/2012/09/06/reshenie-irratsionalnykh-uravneniy-v-9-klasse