Иррациональным уравнением называется уравнение содержащее неизвестную под знаком

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

41. Иррациональные уравнения

Иррациональным уравнением Называется уравнение, содержащее неизвестную под знаком корня или под дробным показателем. (В этом параграфе термин «корень» будет соответствовать операции извлечения корня с определенным показателем, в отличие от термина «решение»).

Основной метод решения таких уравнений – возведение обеих частей уравнения в одну и ту же степень, чтобы корни исчезли. Иногда приходится возводить в степень несколько раз. При этом следует анализировать, какие корни надо оставлять в левой части уравнения, а какие корни перенести в правую часть (если корней несколько). От этого часто зависит рациональность решения.

Поскольку корни нечетной степени определены для любых по знаку подкоренных выражений и принимают любые по знаку значения, то возведение уравнения в нечетную степень является равносильным преобразованием (т. е. мы не теряем решений и не получаем посторонних).

Корни с четным показателем определены для F(X) ³ 0. Возведение уравнения, содержащего такие корни, в четную степень может изменить ОДЗ уравнения и привести к посторонним решениям. В таком случае итоговым моментом в решении уравнения является проверка полученных решений подстановкой в заданное уравнение. Проверка решения по ОДЗ такого уравнения недостаточна.

ОДЗ иррационального уравнения следует находить в том случае, если предполагается, что она состоит только из нескольких чисел или может быть пустым множеством. Если ОДЗ состоит из одного, двух и т. д. чисел, то уравнение можно не решать, а эти числа проверять (являются ли они решением) подстановкой в заданное уравнение.

Если ОДЗ есть пустое множество, то уравнение не имеет решений.

При решении иррациональных уравнений используют также метод замены переменной и другие методы.

Если имеется уравнение вида где С 0, B > 0, сводится к решению системы

V тип: Уравнения, решаемые функциональными методами и методами, основанными на ограниченности входящих в уравнение функций.

Решение уравнений основывается на следующих утверждениях.

1. Если и для всех , то на множестве X уравнение F(X) = G(X) Равносильно системе уравнений

2. Если функции F(X) и G(X) непрерывны и F(X) возрастает, а G(X) убывает для X Î X, то уравнение F(X) = G(X) имеет не больше одного решения на промежутке X. Если один корень подобрать, то других корней нет.

3. Если F(X) – возрастающая функция, то уравнение равносильно уравнению

4. Если F(X) – возрастающая (убывающая) функция, то уравнение равносильно уравнению

Пример 1. Решить уравнение

Решение. Возведем обе части уравнения в квадрат:

Приводим подобные. При этом в левой части уравнения записываем корень, остальные слагаемые – в правой части:

Возводим полученное уравнение в квадрат еще раз:

Решая последнее квадратное уравнение, находим корни которые теперь необходимо проверить. Делаем проверку корней подстановкой в исходное уравнение. Первый корень не подходит.

Приходим к ответу:

Пример 2. Решить уравнение

Решение. Возведем обе части уравнения в куб:

Воспользовавшись исходным уравнением, заменим выражение выражением Получаем:

Решаем совокупность уравнений

В результате замены выражения могут появиться посторонние корни, так как такое преобразование не является равносильным. Поэтому необходимо произвести проверку. Подставляем найденные значения и убеждаемся, что они являются корнями исходного уравнения.

Приходим к ответу:

Пример 3. Решить уравнение

Решение. Возведение уравнения в квадрат приводит к уравнению четвертой степени и громоздкому решению.

Нетрудно заметить, что в данном уравнении можно произвести замену. Но перед этим преобразуем уравнение следующим образом:

Заменив получаем квадратное уравнение

Решая его, находим корни

Возвращаемся к исходной неизвестной:

Первое уравнение решений не имеет, так как его левая часть неотрицательна, а правая – отрицательна. Второе уравнение возводим в квадрат. Получаем:

т. е.

Его корни С помощью проверки убеждаемся, что оба корня подходят, т. е. приходим к ответу:

Пример 4. Решить уравнение

Решение. 1-й способ. Перенесем второй корень вправо:

Возводим обе части в квадрат:

Еще раз возводим в квадрат и получаем квадратное уравнение, решая которое и получаем корни Делаем проверку корней подстановкой в исходное уравнение. Оба корня подходят.

2-й способ. Введем замену тогда Таким образом получили более простое уравнение

т. е.

Возведем его в квадрат:

Возвращаемся к исходной неизвестной:

Возводим обе части уравнения в квадрат:

откуда

При помощи проверки убеждаемся, что оба корня подходят.

3-й способ. Домножим обе части уравнения на выражение, сопряженное левой части исходного уравнения. Получим:

Сложим последнее уравнение с исходным. Получим:

т. е.

Последнее уравнение возводим в квадрат. Получаем квадратное уравнение

Решая его, находим корни

Приходим к ответу:

Пример 5. Решить уравнение

Решение. Пусть Тогда и по условию.

Решаем ее методом подстановки:

Второе уравнение решим отдельно

Возвращаемся к системе:

Переходим к заданным неизвестным:

Решая последнюю совокупность, находим корни и С помощью проверки убеждаемся, что оба корня подходят.

Получили ответ:

При решении иррациональных уравнений, как правило, нахождение ОДЗ является бесполезным, так как проверка решений по ОДЗ недостаточна. Но существует ряд примеров, в которых нахождение ОДЗ является тем методом, который приводит к успеху. Покажем это на следующем примере.

Пример 6. Решить уравнение

Решение. Найдем ОДЗ данного уравнения:

Решаем последнюю систему неравенств графически (рис. 5.10).

Получили, что ОДЗ состоит из единственной точки

Остается подставить значение в уравнение и выяснить, является ли оно решением:

Получили, что – решение.

Пример 7. Решить уравнение

Решение. Используем графический способ. Строим графики функций (рис. 5.11).

Из рисунка видно, что графики пересекаются в единственной точке X = 7. Следовательно, уравнение имеет единственное решение. Проверяем X = 7 подстановкой в заданное уравнение и убеждаемся, что это точное значение решения уравнения.

Опорный конспект «Решение иррациональных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тема занятия «Решение иррациональных уравнений»

Определение: Иррациональным уравнением называется уравнение, содержащее неизвестную под знаком радикала, а также под знаком возведения в дробную степень.

Основная цель при решении иррациональных уравнений состоит в том, чтобы освободиться от знака радикала и получить рациональное уравнение.

При решении иррациональных уравнений применяют следующие основные методы :

• возведение в степень обеих частей уравнения;

введение новой переменной;

разложение на множители.

Внимание! Перед решением любого иррационального уравнения нужно найти область допустимых значений (под знаком корня чётной степени могут стоять только положительные числа или равные нулю): = a , то f ( x )>=0. Либо сделать проверку в конце решения.

1. Метод возведения в степень обеих частей уравнения:

а) если иррациональное уравнение содержит только один радикал, то нужно
записать так, чтобы в одной части знака равенства оказался только этот радикал.
Затем обе части уравнения возводят в одну и ту же степень, чтобы получилось
рациональное уравнение;

б) если в иррациональном уравнении содержится два или более радикала, то
сначала изолируется один из радикалов, затем обе части уравнения возводят в
одну и ту же степень, и повторяют операцию возведения в степень до тех пор,
пока не получится рациональное уравнение.

3) При возведении обеих частей уравнения в одну и ту же степень получается уравнение, не равносильное данному. Поэтому необходимо проверить, удовлетворяют или не удовлетворяют найденные значения переменной данному уравнению. Проверка является составной частью решения иррациональных уравнений, целью которой является исключение посторонних корней уравнения.

Ответ: х=3

Ответ х=2

2. Метод введения новой переменной

Данный метод, как правило, применяется в том случае, когда в уравнении неоднократно встречается некоторое выражение, зависящее от неизвестной величины. Тогда имеет смысл принять это выражение за новую переменную и решить уравнение сначала относительно введенной неизвестной, а потом найти исходящую величину.

Пример №9 Решите уравнение

3. Метод разложения на множители

Для решения иррациональных уравнений данным методом следует пользоваться правилом:

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей, входящих в это произведение, равен нулю, а остальные при этом имеют смысл.

4. Самостоятельно решите иррациональные уравнения, предварительно найдите ОДЗ:


источники:

http://matica.org.ua/metodichki-i-knigi-po-matematike/algebraicheskie-uravneniia-i-neravenstva-funktcii-logarifmy/41-irratcionalnye-uravneniia

http://infourok.ru/opornyj-konspekt-reshenie-irracionalnyh-uravnenij-4303839.html