Иррациональным уравнением называется уравнение в котором неизвестное находится

Что такое иррациональные уравнения? Определения, примеры.

Прежде чем говорить про решение иррациональных уравнений, следует хорошо разобраться с вопросом, что такое иррациональные уравнения. Сейчас мы этим и займемся: познакомимся с определением иррационального уравнения и рассмотрим примеры уравнений этого вида.

Следует заметить, что определения немного отличаются от одной математической книги к другой. Поэтому давайте найдем и выпишем определения из учебников, рекомендованных Министерством образования и науки Российской Федерации, а также из других источников, чтобы проанализировать их, и выбрать для себя лучшее.

Подробный разговор про иррациональные уравнения и их решение ведется на уроках алгебры и начал анализа в старших классах школы. Однако некоторые авторы вводят в рассмотрение уравнения этого вида раньше. Например, те, кто занимаются по учебникам Мордковича А. Г., узнают про иррациональные уравнения уже в 8 классе: в учебнике [1, с. 174] утверждается, что

Иррациональным уравнением называют уравнение, если в нем переменная содержится под знаком квадратного корня.

Там же приводятся примеры иррациональных уравнений , , , и т.п. Очевидно, в каждом из приведенных уравнений под знаком квадратного корня содержится переменная x , значит, по приведенному выше определению эти уравнения – иррациональные. Здесь же сразу разбирается один из основных методов их решения – метод возведения в квадрат обеих частей уравнения. Но о методах решения разговор пойдет чуть ниже, пока же приведем определения иррациональных уравнений из других учебников.

В учебниках Колмогорова А. Н. [3, с. 214] и Колягина Ю. М. [4, с. 193]

иррациональными называют уравнения, в которых под знаком корня содержится переменная.

Обратим внимание на принципиальное отличие данного определения от предыдущего: здесь говорится просто корень, а не квадратный корень, то есть, не уточняется степень корня, под которым находится переменная. Значит, корень может быть не только квадратным, но и третьей, четвертой и т.д. степени. Таким образом, последнее определение задает более обширную группу уравнений.

Возникает закономерный вопрос, почему в старших классах мы начинаем использовать это более широкое определение иррациональных уравнений? Все объяснимо и просто: когда в 8 классе происходит знакомство с иррациональными уравнениями, нам хорошо известен лишь квадратный корень, ни о каких кубических корнях, корнях четвертой и более высоких степеней мы еще не знаем. А в старших классах обобщается понятие корня, мы узнаем про корень степени n, и при разговоре об иррациональных уравнениях уже не ограничиваемся квадратным корнем, а имеем в виду корень произвольной степени.

Для наглядности продемонстрируем несколько примеров иррациональных уравнений. — здесь под знаком кубического корня расположена переменная x , поэтому это уравнение иррациональное. Другой пример: — здесь переменная x находится как под знаком квадратного корня, так и корня четвертой степени, то есть, это тоже иррациональное уравнение. Вот еще пара примеров иррациональных уравнений более сложного вида: и .

Приведенные определения позволяют для себя отметить, что в записи всякого иррационального уравнения имеются знаки корней. Также понятно, что если знаков корней нет, то уравнение не является иррациональным. Однако не все уравнения, содержащие знаки корней, являются иррациональными. Действительно, в иррациональном уравнении под знаком корня должна быть переменная, если переменной под знаком корня нет, то уравнение не является иррациональным. В качестве иллюстрации приведем примеры уравнений, которые содержат корни, но не являются иррациональными. Уравнения и не являются иррациональными, так как не содержат переменных под знаком корня – под корнями стоят числа, а переменных под знаками корней нет, поэтому эти уравнения не иррациональные.

Некоторые сборники задач для подготовки к ЕГЭ в разделе «иррациональные уравнения» содержат задания, в которых переменная находится не только под знаком корня, но еще и под знаком какой-либо другой функции, например, модуля, логарифма и т.п. Вот пример , взятый из книги [5], а вот — из сборника [6]. В первом примере переменная x находится под знаком логарифма, а логарифм еще под знаком корня, то есть, мы имеем, если так можно выразиться, иррациональное логарифмическое (или логарифмическое иррациональное) уравнение. Во втором примере переменная находится под знаком модуля, а модуль еще и под знаком корня, с Вашего позволения назовем его иррациональным уравнением с модулем.

Считать ли уравнения подобного вида иррациональными? Вопрос хороший. Вроде переменная под знаком корня есть, но смущает что она не в «чистом виде», а под знаком еще одной или большего числа функции. Другими словами, вроде нет противоречия тому, как мы определили выше иррациональные уравнения, но присутствует некоторая степень неуверенности из-за наличия других функций. С нашей точки зрения, не стоит фанатично подходить к «называнию вещей своими именами». На практике достаточно сказать просто «уравнение» без уточнения, какого именно оно вида. А все эти добавки «иррациональное», «логарифмическое» и т.п. служат по большей части для удобства изложения и группировки материала.

В свете информации последнего абзаца интерес представляет определение иррациональных уравнений, данное в учебнике под авторством Мордковича А. Г. за 11 класс [2, с. 237]

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень.

Здесь, помимо уравнений с переменной под знаком корня, иррациональными считаются и уравнения с переменными под знаком возведения в дробную степень. Например, согласно этому определению уравнение считается иррациональным. С чего вдруг? Мы же уже привыкли к корням в иррациональных уравнениях, а здесь не корень, а степень, и это уравнение больше хочется назвать, к примеру, степенным, а не иррациональным? Все просто: степень с дробным показателем определяется через корни, и на ОДЗ переменной x для данного уравнения (при условии x 2 +2·x≥0 ) его можно переписать с использованием корня как , а последнее равенство представляет собой привычное нам иррациональное уравнение с переменной под знаком корня. Да и методы решения уравнений с переменными в основании дробных степеней абсолютно такие же, как и методы решения иррациональных уравнений. Так что удобно их назвать иррациональными и рассматривать в этом свете. Но будем честными с собой: изначально перед нами уравнение , а не , и язык не очень охотно поворачивается называть исходное уравнение иррациональным из-за отсутствия корня в записи. Уйти от подобных спорных моментов относительно терминологии позволяет все тот же прием: назвать уравнение просто уравнением безо всяких видовых уточнений.

Избежать подобных спорных моментов можно и через более строгое определение. Пример такого определения можно найти в справочнике советских времен [7, с. 64]:

Иррациональным называется уравнение, в котором некоторое рациональное или алгебраическое выражение от неизвестного находится под знаком радикала.

Согласно этому определению в иррациональном уравнении под знаком радикала может находиться только выражение, в котором над переменной не совершается иных действий, кроме сложения, вычитания, умножения, деления, возведения в степень (натуральную) и извлечения корня. Это определение исключает нахождения переменной в иррациональном уравнении под знаками логарифмов, тригонометрических функций, в показателе степени и др.

Какое из приведенных выше определений предпочесть? Наверное, стоит называть иррациональными только такие уравнения, которые не противоречат ни одному из записанных определений, а остальные называть просто уравнениями без уточнения, что это за уравнение.

Пара слов о количестве переменных в записи иррациональных уравнений. Все приведенные выше иррациональные уравнения содержат единственную переменную x , то есть, являются уравнениями с одной переменной. Однако ничто не мешает рассматривать и иррациональные уравнения с двумя, тремя и т.д. переменными. Приведем пример иррационального уравнения с двумя переменными и с тремя переменными .

Но при этом обязательно нужно заметить, что в школе обычно рассматривается решение иррациональных уравнений только с одной переменной. Иррациональные уравнения с несколькими переменными встречаются не для решения, а в составе систем уравнений или при алгебраическом описании геометрических объектов. Например, можно встретить задание «решите систему уравнений », или увидеть описание полуокружности с центром в начале координат, радиусом 3 единицы, лежащей в верхней полуплоскости, при помощи уравнения .

В школе также рассматриваются иррациональные уравнения с параметром. Приведем пример: , здесь x – переменная, a — параметр. Как понять, что это уравнение с параметром, а не уравнение с двумя переменными? Как правило, это указывается в задании.

В заключение скажем, что встречается термин «простейшие иррациональные уравнения». Так что рекомендуем ознакомиться, что понимают под простейшими иррациональными уравнениями.

Иррациональные уравнения в математике с примерами решения и образцами выполнения

Задача:

В треугольнике ABC (рис. 75):

AD = 2 см, DC = 5 см,
АВ + ВС = 9 см.
Найти BD.

Решение:

Пусть длина отрезка BD равна х см. Тогда

Получилось уравнение, в котором неизвестное входит в подкоренное выражение. Такое уравнение называется иррациональным. Решение этого уравнения приведено на странице 310.

Определение:

Уравнение, в котором неизвестное входит в какое-либо выражение, стоящее под знаком корня, называется иррациональным.

Во многих случаях иррациональное уравнение, как это ниже показано на примерах, может быть преобразовано в рациональное, являющееся его следствием. Но прежде чем показать это на примерах, мы изложим предварительные сведения, необходимые для понимания процесса решения иррациональных уравнений.

1. Всякий корень четной степени из положительного числа, входящий в иррациональное уравнение, мы будем считать, как и раньше, арифметическим. Поясним это. Если А > 0 и в иррациональное уравнение входит , то всегда будем считать, что

Принимая во внимание сказанное выше, мы должны считать, что, например, уравнение

не имеет корней. Действительно,

при
при
при — мнимое число.

Таким образом, никогда не может равняться числу — 1, а это и значит, что уравнение

корней не имеет.

Было бы ошибкой считать число 4 корнем уравнения , так как . Аналогично можно убедиться, что ни одно из следующих уравнений также не имеет корней.

Теорема:

Если обе части уравнения А=В возвысить в квадрат, то полученное уравнение будет иметь своими корнями все корни данного уравнения А = В и корни уравнения А = — В, (Уравнение А = —В будем называть сопряженным уравнению А = В.) Но прежде чем доказывать эту теорему, поясним ее содержание на примере. Рассмотрим уравнение х + 1 = 5 и уравнение, ему сопряженное, т. е. х + 1 = —5. У первого уравнения имеется единственный корень 4, а у второго —6. Возведя левую и правую части уравнения х + 1 = 5 в квадрат, получим, что

Решив это уравнение, убедимся, что его корнями будут числа 4 и — 6, т. е. только корни данного уравнения х + 1 = 5 и сопряженного ему уравнения х + 1 = —5 .

Как раз в этом и заключается смысл сформулированной выше теоремы.

Доказательство:

Уравнение равносильно уравнению , или уравнению . Но. это последнее уравнение удовлетворяется как при А = В, так и при А = — В и никогда больше. Теорема доказана.

Следствие:

Из доказанной теоремы вытекает, что при переходе от уравнения А = В к уравнению потери корней не произойдет, но могут появиться посторонние корни, а именно корни уравнения
А = —В.

Если окажется, что уравнение А = — В не имеет корней, то не появляется и посторонних корней.

Иррациональные уравнения, содержащие только один радикал

Уединив корень, получим:

Возведем обе части этого уравнения в квадрат. В результате получим рациональное уравнение

Решив последнее уравнение, получим, что

Теперь необходимо проверить, являются ли числа 6 и 1 корня-ми данного уравнения. Проверка показывает, что число 6 является корнем уравнения , а число 1 его корнем не является. Мы возводили в квадрат левую и правую части уравнения . Значит, число 1 есть корень сопряженного уравнения, т. е. уравнения

Итак, иррациональное уравнение

имеет лишь один корень, равный числу 6.

Возьмем еще одно уравнение, содержащее только один радикал, а именно:

Здесь корень уже уединен. Поэтому, возведя обе части уравнения в квадрат, получим:

Проверка показывает, что число 105 является корнем данного уравнения. Здесь мы не получили постороннего корня, потому что сопряженное уравнение, т. е. уравнение , корней не имеет.

Примеры:

Проверка показывает, что оба числа 5 и —55 являются корнями уравнения

Значит, сопряженное уравнение, т. е. уравнение

корней не имеет.

Уравнения, содержащие два квадратных радикала

Пример:

Уединим один из корней:

Возведем в квадрат левую и правую части последнего уравнения:

Уединим один оставшийся корень:

Проверкой устанавливаем, что данное уравнение имеет только один корень, равный числу 20.

Пример:

В качестве второго примера решим уравнение

составленное по условиям задачи, поставленной в начале настоящей главы.

Легко убедиться, что оба числа являются корнями уравнения . Но мы знаем, что не всякий корень уравнения, составленного по условиям задачи, обязательно должен являться и решением самой задачи. В данном случае решением задачи будет только положительный корень . Значит, искомая высота BD треугольника ABC будет равна см.

Пример:

Уединим один из корней:

Возведем в квадрат левую и правую части этого уравнения:

Последнее уравнение корней не имеет, ибо его левая часть есть отрицательное число, а правая часть ни при каком значении х не может быть числом отрицательным. Значит, и первоначальное уравнение корней не имеет.

Искусственные приемы решения иррациональных уравнений

Пример:

Примем новое неизвестное и положим, что Тогда и данное уравнение примет вид: ^-3(/ + 2 = 0.

Отсюда

Приняв , получим, что

Приняв затем . получим, что . Оба числа 8 и 1 являются корнями данного уравнения.

Пример:

Положим, что Тогда и Относительно нового неизвестного у данное уравнение примет вид:

Освободившись от корня, получим:

Отсюда

Значение следует отбросить, так как буквой у мы
обозначили который отрицательных значений принимать не может.

Взяв у = 2 и подставив это значение неизвестного у в уравнение получим или Откуда

Числа 0 и 2 являются корнями первоначального уравнения. Других действительных корней данное уравнение не имеет.

Пример:

Подстановкой убеждаемся, что 1 не есть корень данного уравнения. Поэтому, разделив обе части уравнения на получим уравнение

После сокращения последнее уравнение принимает вид:

Обозначив через у, получим:

Составим производную пропорцию, воспользовавшись тем, что сумма членов первого отношения так относится к их разности, как сумма членов второго отношения к их разности. Получим, что

Способ решения иррационального уравнения с помощью системы рациональных уравнений

Решение всякого иррационального уравнения можно свести к решению соответствующей системы рациональных уравнений. Общий метод, позволяющий это сделать, покажем на примерах.

1. Решить уравнение

Пользуясь тем, что

и тем, что получим уравнение

Отсюда 1) аb = 6 и 2) аb = 44.

Теперь остается решить две системы:

Первая система дает а = 2, b = 3 и а = 3, b = 2.
Вторая система действительных решений не имеет.

Пользуясь, например, уравнением и полученными значениями неизвестного а, найдем действительные корни данного иррационального уравнения:

2. Решить уравнение:

или равносильную ей систему:

Отсюда а = 6.

Из уравнения находим, что х = 29.

3. Решить уравнение:

Из последних двух равенств будем иметь:

илн равносильную ей систему:

Пользуясь уравнением и найденными значениями неизвестного а, найдем корни первоначального уравнения:

Дополнение к иррациональным уравнениям и примеры с решением

Уравнения, в которых переменная находится под знаком корня, называются иррациональными. Решение иррациональных уравнений сводится к переходу от иррационального уравнения к рациональному путем возведения обеих частей уравнения в степень, равную показателю степени корня. Если показатель степени четный, то необходимо либо предварительно выписывать ограничения: подкоренное выражение должно быть неотрицательным, выражение, равное арифметическому корню, также должно быть неотрицательным, т. к. в четную степень без приобретения посторонних корней можно возводить только неотрицательные выражения, либо делать проверку полученных решений.

Этот материал взят со страницы решения задач по математике:

Возможно вам будут полезны эти страницы:

Уравнения, содержащие знак модуля

1.Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель радикала — четное число, то подкоренное выражение должно быть неотрицательным; при этом значение радикала также является неотрицательным;

2) если показатель радикала — нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак радикала совпадает со знаком подкоренного выражения.

Рассмотрим уравнение вида

Если то уравнение (1) не имеет корней, так как левая часть уравнения (1) не может принимать отрицательные значения ни при каких значениях .

Если же то при возведении обеих частей уравнения (1) в квадрат получим равносильное уравнение. Таким образом, уравнение (1) равносильно системе

Замечание:

При решении уравнения (1) нет необходимости предварительно находить ОДЗ левой части (1), решая неравенство которое может оказаться довольно сложным. Достаточно найти корни уравнения (2) и, не прибегая к непосредственной подстановке этих корней в уравнение (1), выяснить, какие из найденных корней удовлетворяют неравенству (3). Эти корни, и только они, являются корнями уравнения (1).

2.Из определения модуля (абсолютной величины) числа следует, что

1)

2)

3) если и — произвольные точки числовой оси, то расстояние между ними равно

Пример:

Решение:

Уравнение (4) равносильно системе

Уравнение (5), равносильное каждому из уравнений имеет корни из которых лишь корень удовлетворяет условию (6).

Ответ.

Пример:

Решение:

Возведя обе части уравнения (7) в квадрат, получим уравнение

равносильное (7), так как обе части уравнения (7) неотрицательны. Уравнение (8) равносильно уравнению

Возведя в квадрат обе части уравнения (9), получим уравнение

которое имеет корни

Заметим, что уравнение (11) является следствием уравнения (7), так как Число — корень уравнения (7), а число — посторонний корень для уравнения (7): при левая часть уравнения (7) больше четырех.

Ответ.

В рассмотренном примере можно было сначала перенести один из радикалов в правую часть уравнения (метод уединения радикала), а затем возвести обе части полученного уравнения в квадрат.

Воспользуемся этим приемом при решении следующего примера.

Пример:

Решение:

Применив метод уединения радикала, получим уравнение

равносильное уравнению (12).

Заметим, что нет необходимости находить ОДЗ уравнения (13), но следует обратить внимание на подкоренные выражения. Если ввести новое неизвестное (выполнить замену переменной), полагая , то уравнение (13) примет вид

При (в ОДЗ уравнения (14)) это уравнение равносильно каждому из уравнений

Корни и уравнения (15) удовлетворяют условию и поэтому являются корнями уравнения (14).

Если то откуда Если то откуда

Ответ.

В примерах 1-3 был использован метод возведения обеих частей уравнения в квадрат. В отдельных случаях применяются другие приемы, которые могут оказаться более эффективными.

Пример:

Решение:

Положим тогда и уравнение (16) примет вид

Уравнение (17) равносильно каждому из уравнений

Используя тождество запишем уравнение (18) в виде

Так как то уравнение (18) и равносильное ему уравнение (19) можно записать в виде откуда т. е.

Ответ.

Пример:

Решение:

Полагая преобразуем уравнение к виду

Уравнение (20) имеет корни Если то откуда Если то откуда

Оба найденных корня являются корнями исходного уравнения, так как в процессе решения было использовано (наряду с заменой неизвестного) только преобразование вида при котором получается равносильное уравнение.

Ответ.

Пример:

Решение:

Так как и — это расстояния от искомой точки до точек и соответственно, то из равенства (21) следует, что искомая точка находится на одинаковом расстоянии от точек и . Таким образом, точка — середина отрезка и поэтому

Ответ.

Пример:

Решение:

Полагая получаем уравнение

Если то (23) имеет вид откуда находим

Поскольку при замене на уравнение (23) не меняется, число также является корнем уравнения (23), а корни уравнения (2) — числа и

Ответ.

Пример:

Решение:

Положим тогда уравнение (24) примет вид

Решить уравнение (25) — значит найти все такие точки числовой оси (рис. 8.1), для которых сумма расстояний от каждой из них до точек 1 и 3 равна 6. Заметим, что искомые точки лежат вне отрезка [1,3], так как сумма расстояний от любой точки отрезка до его концов равна 2.

Пусть — искомая точка, лежащая правее точки 3; -расстоя-ние от точки до точки 3, — сумма расстояний от точки до точек 3 и 1. Тогда откуда а точке соответствует число Аналогично, корнем уравнения (25) является точка находящаяся на расстоянии 2 от точки 1.

Таким образом, задача сводится к решению уравнений Первое из них не имеет действительных корней, а второе имеет два корня.

Ответ.

Пример:

Решение:

Функция меняет знак при а функция — при и причем при и Поэтому

а уравнение (26), записанное без знака модуля на промежутках равносильно совокупности следующих систем:

Первой из этих систем удовлетворяют все значения из промежутка второй системе — значение остальные две системы не имеют решений.

Ответ.

Решение иррациональных уравнений

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Методы решения иррациональных уравнений

Разделы: Математика

Основные понятия

Опеределение 1. Уравнение f(x) = g(x) называется иррациональным, если функции f(x) и g(x) – алгебраические и по крайней мере одна из них иррациональна относительно x (т.е. содержит переменную x в подкоренном выражении).

Основным техническим приемом, который используется при решении иррациональных уравнений, является возведение обеих частей уравнения в одну и туже степень. Если рассматривать уравнения над полем действительных чисел, то это преобразование регулируется следующими теоремами.

Теорема 1. Уравнение.

Теорема 2. Уравнение.

Эквивалентно смешанной системе:

Пример 1. Решить уравнение

Возведем обе части уравнения в четвертую степень:

Корень x=2 удовлетворяет этому неравенству.

Иррациональные уравнения, если неизвестное находится в подкоренном выражении корня четной степени, имеют, как правило, ограниченную область допустимых значений (ОДЗ). ОДЗ иррационального уравнения определяется условием: Подкоренное выражение корня четной степени должно быть неотрицательным.

Метод уединения радикала

Суть этого метода состоит в следующем. Радикал (корень) оставляют в одной части уравнения, а остальные члены уравнения переносят в другую часть. После этого обе части уравнения возводят в степень, показатель которой равен показателю уединенного радикала. Если уравнение содержит несколько радикалов, то процедура уединения производится над одним из них, после чего повторяется вплоть до полного избавления уравнения от корней.

Пример 2. Решить уравнение

, ,

,

Очевидно, что оба корня входят в ОДЗ, но x=13 не удовлетворяет неравенству x 4.07.2013


источники:

http://lfirmal.com/irratsionalnyie-uravneniya-zadachi-s-resheniem/

http://urok.1sept.ru/articles/634209