Использование численных методов для решения уравнений

Численные методы решения систем нелинейных уравнений

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через вектор неизвестных и определим вектор-функцию Тогда система (1) записывается в виде уравнения:

(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

(3)

Определим матрицу Якоби:

(4)

Запишем(3) в виде:

(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

(6)

где — итерационные параметры, a — квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Система линейных уравнений (5) для нахождения нового приближения может решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

Использование численных методов для решения уравнений

Дифференциальным уравнением первого порядка называется уравнение вида F(x,y,у’)=0 или у’=f(x,y). Функция y(x), при подстановке которой уравнение обращается в тождество, называется решением дифференциального уравнения.

Рассмотрим несколько численных методов решения дифференциальных уравнений первого порядка. Описание численных методов приводится для уравнения в виде у’=f(x,y).

Рассмотрим два варианта вывода расчетных формул

Реферат: Численные методы решения систем линейных алгебраических уравнений

Введение

Линейная алгебра, численные методы – раздел вычислительной математики, посвященный математическому описанию и исследованию процессов численного решения задач линейной алгебры.

Среди задач линейной алгебры наибольшее значение имеют две: решение системы линейных алгебраических уравнений, определение собственных значений и собственных векторов матрицы. Другие часто встречающиеся задачи: обращение матрицы, вычисление определителя и т.д.

Любой численный метод линейной алгебры можно рассматривать как некоторую последовательность выполнения арифметических операций над элементами входных данных. Если при любых входных данных численный метод позволяет найти решение задачи за конечное число арифметических операций, то такой метод называется прямым . В противоположном случае численный метод называется итерационным . Прямые методы — это такие, как метод Гаусса, метод окаймления, метод пополнения, метод сопряжённых градиентов и др. Итерационные методы – это метод простой итерации, метод вращений, метод переменных направлений, метод релаксации и др.

На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит главным образом не потому, что мы не умеем этого сделать, а поскольку искомое решение обычно не выражается в привычных для нас элементарных или других известных функциях. Поэтому важное значение приобрели численные методы, особенно в связи с возрастанием роли математических методов в различных областях науки и техники и с появлением высокопроизводительных ЭВМ.

Под численными методами подразумеваются методы решения задач, сводящиеся к арифметическим и некоторым логическим действиям над числами, т.е. к тем действиям, которые выполняет ЭВМ.

В настоящее время появилось значительное число различных программных продуктов (MathCAD, MathLABи т.д.), с помощью которых, задавая только входные данные, можно решить значительное число задач.

Конечно, использование таких программных продуктов значительно сокращает время и ресурсы по решению ряда важных задач. Однако, использование этих программ без тщательного анализа метода, с помощью которого решается задача, нельзя гарантировать, что задача решена правильно. Поэтому для более полного понимания того, как осуществляется расчет различного вида уравнений и их систем, необходимо теоретически изучить методы их решения и на практике их проработать. Этим обозначается проблема нашей работы.

Учитывая важность выше указанных проблем, тему своей работы мы определили так: «Численные методы решения систем линейных алгебраических уравнений ».

В качестве объекта исследования выступают различные численные методы решения линейных алгебраических уравнений и систем линейных алгебраических уравнений.

Предметом исследования, является выявление эффективности и сравнительная характеристика методов.

· изучить и проанализировать литературу по проблемам численных методов;

· изучить научную и учебную литературу по теме «Численные методы решения систем линейных алгебраических уравнений;

· определить основные этапы изучения темы «Численные методы решения систем линейных алгебраических уравнений»;

· продемонстрировать на примерах использование методов.

Дипломная работа состоит из введения, двух глав, заключения, списка используемой литературы (20 наименований).

Во введении обоснована актуальность темы исследования, определены объект, предмет, проблема и задачи исследования.

В первой главе изучается теория и терминология численных методов с примерами и пояснениями.

Во второй главе рассматривается применение численных методов решения линейных алгебраических уравнений в теории и на практике.

В заключении подведены итоги и сделаны основные выводы.

Глава I. Теоретические основы исследования

§1 ЧИСЛЕННЫЕ МЕТОДЫ

Разрешимость системы линейных уравнений.

Когда мы говорим о главной матрице системы линейных уравнений, то всегда имеем в виду квадратную матрицу nхn, т. е. матрицу с одинаковым количеством строк и столбцов. Это важно.

Если, например, количество строк (количество уравнений в системе) будет меньше, чем количество столбцов (фактически, количества неизвестных), то система будет неопределенной, т. е. мы не сможем однозначно определить все неизвестные (решить систему).

Но это не единственное ограничение. Из векторной алгебры известно, что система линейных уравнений имеет решение (однозначное) тогда и только тогда, когда ее главный определитель не равен нулю: Δ ≠ 0.

Рассмотрим случай, когда определитель системы равен нулю. Здесь возможны два варианта:

1. Δ = 0 и каждый из дополнительных определителей Δxi = 0. Это имеет место только тогда, когда коэффициенты при неизвестных xi пропорциональны, т. е. каждое уравнение системы получается из первого уравнения умножением обеих его частей на число k. При этом система имеет бесчисленное множество решений.

2. Δ = 0 и хотя бы один дополнительный определитель Δxi ≠ 0. Это имеет место только тогда, когда коэффициенты при всех неизвестных xi , пропорциональны. При этом получается система из противоречивых уравнений, которая не имеет решений [7].

1.1 Матричный метод решения систем линейных алгебраических уравнений

Пусть дана система линейных уравнений:

Рассмотрим матрицу, составленную из коэффициентов при неизвестных:

Свободные члены и неизвестные можно записать в виде матрицы столбцов:

Тогда, используя правило умножение матриц, эту систему уравнений можно записать так:

Равенство (1) называется матричным уравнением или системой уравнений в матричном виде.

Матрица А коэффициентов при неизвестных называется главной матрицей системы.

Иногда рассматривают также расширенную матрицу системы, т. е. главную матрицу системы, дополненную столбцом свободных членов, которую записывают в следующем виде:

Любую линейную систему уравнений можно записать в матричном виде. Например, пусть дана система:

Эта система из двух уравнений с тремя неизвестными – x, y,. В высшей математике можно рассматривать системы из очень большого числа уравнений с большим количеством неизвестных и поэтому неизвестные принято обозначать только буквой х, но с индексами:

Запишем эту систему в матричном виде:

Здесь главная матрица системы:

Расширенная матрица будет иметь вид:

Microsoft Office Excel . Если же говорить о программе Excel, которая является одной из наиболее известных в обработке электронных таблиц, то без преувеличения можно утверждать, что ее возможности практически неисчерпаемы.Обработка текста, управление базами данных — программа настолько мощна, что во многих случаях превосходит специализированные программы — редакторы или программы баз данных. Такое многообразие функций может поначалу запутать, нежели заставить применять их на практике. Но по мере приобретения опыта начинаешь по достоинству ценить то, что границ возможностей Excel тяжело достичь.За всю историю табличных расчетов с применением персональных компьютеров требования пользователей к подобным программам существенно изменились. В начале основной акцент в такой программе, как, например, Visi Calc , ставился на счетные функции. Сегодня, положение другое. Наряду с инженерными и бухгалтерскими расчетами организация и графическое изображение данных приобретают все возрастающее значение. Кроме того, многообразие функций, предлагаемое такой расчетной и графической программой, не должно осложнять работу пользователя. Программы для Windows создают для этого идеальные предпосылки.В последнее время многие как раз перешли на использование Windows в качестве своей пользовательской среды. Как следствие, многие фирмы, создающие программное обеспечение, начали предлагать большое количество программ для Windows.

Программа MathCAD по своему назначению позволяет моделировать в электронном документе научно–технические, а также экономические расчёты в форме, достаточно близкой к общепринятым ручным расчётам. Это упрощает составление программы расчёта, автоматизирует перерасчёт и построение графических иллюстраций подобно электронным таблицам Excel, документирование результатов как в текстовом редакторе Word.

Программа Mathcad известна за лёгкость, с которой математические уравнения, текст, и графика могут быть объединены в одном документе. Кроме того, вычислительные способности Mathcad распространяются от сложения столбца чисел к решению интегралов и производных, решение систем уравнений и больше.

Достоинством MathCAD является также наличие в его составе электронных книг. Одна из них – учебник по самой программе, другие – справочник по различным разделам математики, физики, радиоэлектроники и др.

К численным методам решения систем линейных уравнений относят такие как: метод Гаусса, метод Крамера, итерационные методы. В методе Гаусса, например, работают над расширенной матрицей системы. А в методе Крамера – с определителями системы, образованными по специальному правилу.

1.2 Метод Гаусса – прямой и обратный ход

Рассмотрим метод Гаусса. Например, пусть дана расширенная матрица некоторой системы m линейных уравнений c n неизвестными:

Будем считать, что a11 ≠ 0 (если это не так, то достаточно переставить первую и некоторую другую строку расширенной матрицы местами). Проведем следующие элементарные преобразования:

Т. е. от каждой строки расширенной матрицы (кроме первой) отнимаем первую строку, умноженную на частное от деления первого элемента этой строки на диагональный элемент а11 .

В результате получим матрицу:

Т. е. первая строка осталась без изменений, а в столбце под а1 1 на всех местах оказались нули. Обратим внимание, что преобразования коснулись всех элементов строк, начиная со второй, всей расширенной матрицы системы.

Теперь наша задача состоит в том, чтобы получить нули подо всеми диагональными элементами матрицы А – aij , где I = j.

Повторим наши элементарные преобразования, но уже для элемента α22 .

Т. е. от каждой строки расширенной матрицы (теперь кроме первой и второй) отнимаем вторую строку, умноженную на частное от деления первого элемента этой (текущей) строки на диагональный элемент α22 .

Такие преобразования продолжаются до тех пор, пока матрица не приведется к верхнее — треугольному виду. Т. е. под главной диагональю не окажутся все нули:

Вспомнив, что каждая строка представляет собой одно из уравнений линейной системы уравнений, легко заметить, что последнее m-ое уравнение принимает вид:

Отсюда легко можно найти значение первого корня – xn = δmmn .

Подставив это значение в предыдущее m-1-е уравнение, легко получим значение xn-1 -ого корня.

Таким образом, поднимаясь до самого верха обратным ходом метода Гаусса, мы последовательно найдем все корни системы уравнений [5].

Рассмотрим систему уравнений:

Главный определитель данной системы:

Т. е. система определена и разрешима. Решим ее по методу Гаусса.

Проведем прямой ход метода Гаусса, выписав предварительно расширенную матрицу системы:

Получим нули под главной диагональю в первом столбце расширенной матрицы. Для получения нуля в элементе a21 (т. е. под диагональю во второй строке матрицы) вторую строку матрицы преобразуем по формуле C2 -(a21 /a11 )*C1 = C2 -(2/1)*C1 = C2 -2*C1 :

Аналогично поступаем и с элементом а31 (т. е. под диагональю в третьей строке матрицы). Третью строку матрицы преобразуем по формуле C3 -(a31 /a11 )*C1 = C3 -(-1/1)*C1 = C3 +C1 :

Таким образом, мы получили нули под главной диагональю в первом столбце расширенной матрицы. Осталось получить нуль под главной диагональю во втором столбце матрицы, т. е. на месте элемента а32. Для этого третью строку матрицы преобразуем по формуле C3 -(a32 /a22 )*C2 = C3 -(1/-2)*C2 = C3 +1/2C2 :

Таким образом, проведя прямой ход метода Гаусса , мы получили расширенную матрицу системы, приведенную к верхне-треугольному виду:

Эта матрица эквивалентна системе:

Обратным ходом метода Гаусса найдем корни системы. Из последнего уравнения найдем корень х3 :

Корень x3 = -3/5 найден. Подставим его в верхнее (второе) уравнение системы (-2x2 -3x3 = 1):

Корень x2 = 2/5 найден. Подставим его и корень х3 в верхнее (первое) уравнение системы (x1 -x2 +x3 = 0):

Вывод: Итак, метод Гаусса (или, иначе, метод последовательного исключения неизвестных) состоит в следующем:

1. Путем элементарных преобразований систему уравнений приводят к эквивалентной ей системе с верхнее — треугольной матрицей. Эти действия называют прямым ходом.

2. Из полученной треугольной системы переменные находят с помощью последовательных подстановок (обратный ход).

3. При этом все преобразования проводятся над так называемой расширенной матрицей системы, которую и приводят к верхнее — треугольному виду в прямом ходе метода.

1.3 Итерация для линейных систем

Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы, подобно тому, как это делается для одного уравнения.

Для определенности ограничимся системой из четырех уравнений с четырьмя неизвестными (система четвертого порядка), которую запишем в виде:

Разрешим первое уравнение системы относительно х1 :

Затем разрешим второе уравнение относительно х2 и т. д. Тогда систему можно переписать в виде:

гдеα = -aik /aii , i = 1, 2, 3, 4; k = 1, 2, 3, 4, 5.

Система является частным случаем записи вида:

При этом линейная функция L1 фактически не зависит от х1 .

Зададим какие-либо начальные значения неизвестных (нулевые приближения):

Подставляя эти значения в правые части системы (*), получим первые приближения:

Полученные первые приближения могут быть так же использованы для получения вторых, третьих и т. д. приближений. Т. е. можно записать:

Условия сходимости итерационного процесса.

Установим условия, выполнение которых обеспечит сходимость получающихся приближений к истинному (точному) решению системы х1 , х2 , х3 , х4 .

Не вдаваясь в подробности, скажем, что для того чтобы итерационный процесс сходился к точному решению, достаточно, чтобы все коэффициенты системы были малы по сравнению с диагональными.

Это условие можно сформулировать и более точно [20]:

Для сходимости процесса итераций достаточно, чтобы в каждом столбце сумма отношений коэффициентов системы к диагональным элементам, взятым из той же строки, была строго меньше единицы :

1.4 Итерация Якоби

Рассмотрим систему линейных уравнений:

Уравнения можно записать в виде:

Это позволяет предложить следующий итерационный процесс:

или (другой вид записи)

Покажем, что если начать с точки P0 = (х1 (0) , х2 (0) , х3 (0) , х4 (0) ) = (1, 2, 2), то итерация (3) сходится к решению (2, 4, 3). Подставим х1 = 1, х2 = 2, х2 = 2 в правую часть каждого уравнения из (3), чтобы получить новые значения:

Новая точка P1 = (х1 (1) , х2 (1) , х3 (1) , х4 (1) ) = (1.75, 3.375, 3), ближе, чем P0 .

Итерация, использующая (3), генерирует последовательность точекk >, которая сходится к решению (2, 4, 3):

Название: Численные методы решения систем линейных алгебраических уравнений
Раздел: Рефераты по математике
Тип: реферат Добавлен 07:31:10 24 июня 2011 Похожие работы
Просмотров: 3515 Комментариев: 13 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно Скачать
kх1(k)х2(k)х3(k)
01.02.02.0
11.753.3753.0
21.843753.8753.025
31.96253.9252.9625
41.9906253.97656253.0
51.994140633.99531253.0009375
151.999999933.999999853.0009375
192.04.03.0

Этот процесс называется итерацией Якоби и может использоваться для решения определенных типов линейных систем [19].

1.5 Итерация Гаусса-Зейделя

Процесс итерации Якоби иногда можно модифицировать для ускорения сходимости.

Отметим, что итеративный процесс Якоби производит три последовательности – <х1 (k) >, <х2 (k) >, <х3 (k) >, <х4 (k) >. Кажется разумным, что х1 (k+1) может быть использовано вместо х2 (k ). Аналогично х1 (k+1) и х2 (k+1) можно использовать в вычислении х3 (k+1) . Например, для уравнений из системы (1) это даст следующий вид итерационного процесса Гаусса-Зейделя, использующий (3*):

Такой итерационный процесс даст результаты:

kх1 (k)х2 (k)х3 (k)
01.02.02.0
11.753.752.95
21.953.968752.98625
31.9956253.996093752.99903125
81.999999833.999999882.99999996
91.999999983.999999993.0
102.04.03.0

Т. е. к точному решению мы пришли уже на 10-ом шаге итерации, а не на 19, как в итерации Якоби [19].

1. Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы. Для этого система приводится к виду (для случая системы из четырех уравнений):

Эти формулы как раз и задают собственно итерационный процесс.

2. При этом чтобы итерационный процесс сходился к точному решению, достаточно, чтобы все коэффициенты системы были малы по сравнению с диагональными.

Это условие можно сформулировать и более точно:

Для сходимости процесса итераций достаточно, чтобы в каждом столбце сумма отношений коэффициентов системы к диагональным элементам, взятым из той же строки, была строго меньше единицы:

3. Следует так же сказать, что итерационный процесс может проводиться как в виде итерации Якоби, так и в виде итерации Гаусса-Зейделя. В последнем случае сходимость итерационного процесса может существенно улучшиться.

Глава 2. Применение численных методов для решения систем линейных алгебраических уравнений в теории и на практике

§1 ЧИСЛЕННЫЕ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Существуют два типа ме­тодов — прямые и итерационные. Мы рассматриваем прежде всего метод исключения Гаусса для систем об­щего вида и варианты — метод прогонки и методы мат­ричной прогонки для систем специального вида (с трех-диагональной или блочно-трех диагональной матрицами). Это — прямые методы. Их эффективность зависит от по­рядка системы n структуры матрицы.

При изучении итерационных методов мы трактуем си­стему уравнений как операторное уравнение первого ро­да Au = f и излагаем общую теорию итерационных ме­тодов для операторных уравнений при минимальных предположениях относительно оператора А. Общая тео­рия позволяет доказать сходимость итераций для метода Зейделя и метода верхней релаксации при минимальных ограничениях на оператор А. Рассмотрены два класса методов: 1) для случая, когда известны границы γi > О и γ2 >= γ1 спектра оператора А в некотором энергетиче­ском пространстве HD ; 2) для случая, когда границы γ1 и γ2 неизвестны. Весьма эффективным является попере­менно-треугольный метод.

Основная задача линейной ал­гебры — решение системы уравнений

Будем предполагать, что матрица А невырождена, так что уравнение Аи = 0 имеет только триви­альное решение, и система (1) имеет единственноерешение

В курсе линейной алгебры решение системы (1) обыч­но выражают по формулам Крамера в виде отношений определителей. Для численного решения системы (1) эти формулы непригодны, так как они требуют вычисления N +1 определителей, что требует большого числа дей­ствий (порядка N! арифметических операций). Даже при выборе наилучшего метода вычисление одного определи­теля требует примерно такого же времени, что и реше­ние системы линейных уравнений современными числен­ными методами. Кроме того, следует иметь в виду, что вычисления по формулам Крамера часто ведут к боль­шим ошибкам округлений.

Особенность большинства численных методов для (1) состоит в отказе от нахождения обратной матрицы. Ос­новное требование к методу решения — минимум числа арифметических действий, достаточных для отыскания приближенного решения с заданной точностью е>0 (экономичность численного метода).

Выбор того или иного численного метода зависит от многих обстоятельств — от имеющихся программ, от вида матрицы А, от типа расчета и др. Поясним слова «тип расчета». Возможны разные постановки задачи:

1) найти решение одной конкретной задачи (1);

2) найти решение нескольких вариантов задачи (1) с одной и той же матрицей А и разными правыми частями. Может оказаться, что неоптимальный для одной задачи метод является весьма эффективным для мно­говариантного расчета.

При многовариантном расчете можно уменьшить сред­нее число операций для одного варианта, если хранить некоторые величины, а не вычислять их заново для каж­дого варианта. Это, конечно, зависит от машины, от объ­ема ее оперативной памяти.

При теоретических оценках каче­ства алгоритмов их сравнение проводится по числу q ( e ) арифметических действий, достаточных для нахождения решения задачи с заданной точностью е > 0 [15].

Метод Гаусса. Имеется несколько вычислительных вариантов метода Гаусса, основанного на идее последо­вательного исключения. Процесс решения системы ли­нейных алгебраических уравнений Ax = f (1) по методу Гаусса состоит из двух этапов.

Первый этап (прямой ход). Система (1) приво­дится к треугольному виду

Метод квадратного корня. Этот метод пригоден для систем

с эрмитовой (в действительном случае — симметричной) матрицей А. Матрица А разлагается в произведение

где S — верхняя треугольная, D диагональная матрица. Решение уравнения Аu=fсводится к последователь­ному решению двух систем

Метод квадратного корня требует порядка N 2 /3 арифметических действий, т. е. при больших N он вдвое быстрее метода Гаусса и занимает вдвое меньше ячеек памяти. Это обстоятельство объясняется тем, что метод использует информацию о симметрии матрицы.

1. Метод итераций для решения системы линейных алгебраических уравнений .

Перейдем к общему описанию метода итераций для системы линейных алгебраических уравнений

Для ее решения выбирается некоторое начальное приближение у0 H и последовательно находятся приближенные решения (итерации) уравнения (1). Значение итерации yh +1 выражается через известные предыдущие итерации yk , yk -1 ,… Если при вычислении yh +1 используется толь­ко одна предыдущая итерация yh , то итерационный метод называют одношаговым (или двухслойным) методом; если же yk +1 выражается через две итерации yk и yk -1 , то метод называется двухшаговым (или трехслойным). Мы будем рассматривать в основном одношаговые методы. Будем считать, что А: H -> H — линейный оператор в конеч­номерном пространстве H со скалярным произведе­нием (•, •).

Важную роль играет запись итерационных методов в единой (канонической) форме. Любой двухслойный ите­рационный метод можно записать в следующей канони­ческой форме:

(7), где А: Н -> Н — оператор исходного уравнения (1), В: Н -> Н — линейный оператор, имеющий обратный В -1 , k номер итерации, τ1 τ2 , . τk +1 , . — итерационные параметры, τk +1 > 0. Оператор В может, вообще говоря, зависеть от номера k для Для простоты изложения мы пред­полагаем всюду, что В не зависит от k .

Если В = Е — единичный оператор, то метод(8) называют явным: yh +1 находится по явной формуле

В общем случае, при В≠ Е, метод (7) называют не­явным итерационным методом: для определения yh +1 надо решить уравнение:

(9)

Естественно требовать, чтобы объем вычислений для ре­шения .системы Byk +1 = Fk был меньше, чем объем вы­числений для прямого решения системы Au=f

Точность итерационного метода (7) характеризуется величиной погрешности zh = ук — и, т. е. разностью между решением уравнения (7) и точным решением и исход­ной системы линейных алгебраических уравнений. Под­становка yk = zk + u в (2) приводит к однородному урав­нению для погрешности:

§2 ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

2.1 Общие сведения

К численным методам линейной алгебры относятся численные методы решения систем линейных алгебраических уравнений. Методы решения СЛАУ разбиваются на две группы. К первой группе принадлежат так называемые точные или прямые методы — алгоритм, позволяющий получить решение системы за конечное число арифметических действий. Вторую группу составляют приближенные методы, в частности итерационные методы решения СЛАУ.

2.2.1 Описание метода

Рассмотрим СЛАУ вида

Ax = B, где А — матрица. (1)

Если эту систему удалось привести к виду x = Cx + D, то можно построить итерационную процедуру

xk → x*, где х* — решение заданной системы.

В конечном варианте система будет имееть вид:

Условием сходимости для матрицы С выполняется, если сумма модулей коэффициентов меньше единицы по строкам или по столбцам, т.е.

, или .

Необходимо, чтобы диагональные элементы матрицы А были ненулевыми.

Для преобразования системы можно выполнить следующие операции:

В результате получим систему:

В ней на главной диагонали матрицы С находятся нулевые элементы, остальные элементы выражаются по формулам:

Итерационный процесс продолжается до тех пор, пока значения х1 ( k ), х2 ( k ), х3 ( k ) не станут близкими с заданной погрешностью к значениям х1 ( k -1), х2 ( k -1), х3 ( k -1).

2.2.2 Решение СЛАУ методом простых итераций

Решить СЛАУ методом простых итераций с точностью .

Для удобства преобразуем систему к виду:

,

Принимаем приближение на 0-ом шаге:

,

,

На 1-м шаге выполняем следующее:

Подставляем принятые приближения в первоначальную систему уравнений

Смотрим не выполняется ли условие остановки итерационного процесса:

:

На 2-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 3-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 4-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 5-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса:

:

На 6-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса:

:

Необходимая точность достигнута на 6-й итерации. Таким образом, итерационный процесс можно прекратить [14].

2.3 Метод Зейделя

2.3.1 Описание метода

В этом методе результаты, полученные на k-том шаге, используются на этом же шаге. На (k+1) — й итерации компоненты приближения вычисляются по формулам:

Этот метод применим к система уравнений в виде Ax=B при условии, что диагональный элемент матрицы коэффициентов A по модулю должен быть больше, чем сумма модулей остальных элементов соответствующей строки (столбца).

Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:

, либо

2.3.2 Решение СЛАУ методом Зейделя

Решить СЛАУ методом Зейделя с точностью .

Эту систему можно записать в виде:

В этой системе сразу видно, что выполняется условие, где диагональные элементы матрицы коэффициентов по модулю больше, чем сумма модулей остальных элементов соответствующей строки.

Для удобства преобразуем систему к виду:

,

Принимаем приближение на 0-ом шаге:

На 1-м шаге выполняем следующее:

Подставляем принятые приближения в первоначальную систему уравнений

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 2-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 3-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса:

:

На 4-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

Необходимая точность достигнута на 4-й итерации. Таким образом, итерационный процесс можно прекратить [9].

2.4 Сравнительный анализ

Можно заметить, что в методе Зейделя быстрее мы достигаемой нужной точности, в нашем случае в точность была достигнута на 4-й итерации, когда в методе простых итераций она была достигнута на 6-й итерации. Но в то же время в методе Зейделя ставится больше условий. Поэтому вначале нужно произвести иногда довольно трудоемкие преобразования. В таблице 4.1 приведены результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации:


источники:

http://toehelp.ru/theory/informat/lecture13.html

http://www.bestreferat.ru/referat-238943.html