Использование и применение дифференциальных уравнений

Что такое дифференциальное уравнение и зачем оно нужно?

На сегодняшний день одним из важнейших навыков для любого специалиста является умение решать дифференциальные уравнения. Решение дифференциальных уравнений – без этого не обходится ни одна прикладная задача, будь это расчет какого-либо физического параметра или моделирование изменений в результате принятой макроэкономической политики. Эти уравнения также важны для ряда других наук, таких как химия, биология, медицина и т.д. Ниже мы приведем пример использования дифференциальных уравнений в экономике, но перед этим кратко расскажем об основных типах уравнений.

Дифференциальные уравнения – простейшие виды

Мудрецы говорили, что законы нашей вселенной написаны на математическом языке. Конечно, в алгебре есть много примеров различных уравнений, но это, большей частью, учебные примеры, неприменимые на практике. По-настоящему интересная математика начинается, когда мы хотим описать процессы, протекающие в реальной жизни. Но как отразить фактор времени, которому подчиняются реальные процессы – инфляция, выработка продукции или демографические показатели?

Вспомним одно важное определение из курса математики, касающееся производной функции. Производная является скоростью изменения функции, следовательно, она может помочь нам отразить фактор времени в уравнении.

То есть, мы составляем уравнение с функцией, которая описывает интересующий нас показатель и добавляем в уравнение производную этой функции. Это и есть дифференциальное уравнение. А теперь перейдем к простейшим типам дифференциальных уравнений для чайников.

Простейшее дифференциальное уравнение имеет вид $y’(x)=f(x)$, где $f(x)$ – некоторая функция, а $y’(x)$ – производная или скорость изменения искомой функции. Оно решается обычным интегрированием: $$y(x)=\int f(x)dx.$$

Второй простейший тип называется дифференциальным уравнением с разделяющимися переменными. Такое уравнение выглядит следующим образом $y’(x)=f(x)\cdot g(y)$. Видно, что зависимая переменная $y$ также входит в состав конструируемой функции. Уравнение решается очень просто – нужно «разделить переменные», то есть привести его к виду $y’(x)/g(y)=f(x)$ или $dy/g(y)=f(x)dx$. Остается проинтегрировать обе части $$\int \frac=\int f(x)dx$$ – это и есть решение дифференциального уравнения разделяющегося типа.

Последний простой тип – это линейное дифференциальное уравнение первого порядка. Оно имеет вид $y’+p(x)y=q(x)$. Здесь $p(x)$ и $q(x)$ – некоторые функции, а $y=y(x)$ – искомая функция. Для решения такого уравнения применяют уже специальные методы (метод Лагранжа вариации произвольной постоянной, метод подстановки Бернулли).

Есть более сложные виды уравнений – уравнения второго, третьего и вообще произвольного порядка, однородные и неоднородные уравнения, а также системы дифференциальных уравнений. Для их решения нужна предварительная подготовка и опыт решения более простых задач.

Большое значение для физики и, что неожиданно, финансов имеют так называемые дифференциальные уравнения в частных производных. Это значит, что искомая функция зависит от нескольких переменных одновременно. Например, уравнение Блека-Шоулса из области финансового инжиниринга описывает стоимость опциона (вид ценной бумаги) в зависимости от его доходности, размера выплат, а также сроков начала и конца выплат. Решение дифференциального уравнения в частных производных довольно сложное, обычно нужно использовать специальные программы, такие как Matlab или Maple.

Пример применения дифференциального уравнения в экономике

Приведем, как и было обещано, простой пример решения дифференциального уравнения. Вначале поставим задачу.

Для некоторой фирмы функция маржинальной выручки от продажи своей продукции имеет вид $MR=10-0,2q$. Здесь $MR$ – маржинальная выручка фирмы, а $q$ – объем продукции. Нужно найти общую выручку.

Как видно из задачи, это прикладной пример из микроэкономики. Множество фирм и предприятий постоянно сталкивается с подобными расчетами в ходе своей деятельности.

Приступаем к решению. Как известно из микроэкономики, маржинальная выручка представляет собой производную от общей выручки, причем выручка равна нулю при нулевом уровне продаж.

С математической точки задача свелась к решению дифференциального уравнения $R’=10-0,2q$ при условии $R(0)=0$.

Проинтегрируем уравнение, взяв первообразную функцию от обеих частей, получим общее решение: $$R(q) = \int (10-0,2q)dq = 10 q-0,1q^2+C. $$

Чтобы найти константу $C$, вспомним условие $R(0)=0$. Подставим: $$R(0) =0-0+C = 0. $$ Значит C=0 и наша функция общей выручки принимает вид $R(q)=10q-0,1q^2$. Задача решена.

Другие примеры по разным типам ДУ собраны на странице: Дифференциальные уравнения с решениями онлайн.

Применение дифференциальных уравнений первого порядка для решения задач

Раздел 1. Математический анализ

Тема 1.4. Дифференциальные уравнения и их применения в медицине

1. Основные понятия и определения дифференциального уравнения.

2. Методы решения некоторых дифференциальных уравнений.

3. Применение дифференциальных уравнений первого порядка для решения задач.

Основные понятия и определения дифференциального уравнения

Опр. Равенство, связывающее независимую переменную х, неизвестную функцию у = f(x), а так же её производные y’,y”,….. y n , называется обыкновенным дифференциальным уравнением.

F(x,y.y’,y”………) = 0, где F – известная функция, заданная в некоторой фиксированной области; х – независимая переменная; у – зависимая переменная; y’,y”,….. y n – её производные.

Опр. Решением дифференциального уравнения называется функция у = f(x), которая будучи представлена в уравнении F(x,y.y’,y”………) = 0, обращает его в тождество. График этой функции называется интегральной кривой.

Пример 1.1. Дифференциальное уравнение

Представим в виде: ; возьмём интеграл от левой и правой части уравнения: Получим – общее решение дифференциального уравнения, которое включает произвольную постоянную с.

Методы решения некоторых дифференциальных уравнений

Выбор метода решения дифференциального уравнения зависит от его вида.

Дифференциальные уравнения первого порядка с разделяющимися переменными.

Уравнения вида называется уравнением с разделяющимися переменными, если функция разлагаются на множители, зависящие каждый только от одной переменной:

После резделения переменных, когда каждый член будет зависеть только от одной переменной, общий интеграл уравнения находится почленным интегрированием:

Решением этого уравнения будет:

Пример 2.1. Найти решение уравнения: .

Разделим уравнение на множители, зависящие только от одной переменной:

Проинтегрируем левую и правую части:

Общее решение:

Линейные дифференциальные уравнения первого порядка.

Опр. Уравнения вида: , где – непрерывные функции, называются линейными дифференциальными уравнениями первого порядка.

При уравнение – называется линейным однородным уравнением. Общее решение:

При уравнение – называется линейным неоднородным уравнением. Общее решение:

Применение дифференциальных уравнений первого порядка для решения задач

Этапы решения задач с помощью дифференциальных уравнений:

1. Оформить условия, в которых протекают изучаемые процессы;

2. Выбрать зависимые и независимые переменные;

3. Определить функциональные зависимости между ними

4. Решение уравнения;

5. Анализ полученных решений.

В уравнениях, описывающих медико-биологические процессы, в качестве независимой переменной чаще всего используется временная компонента.

Размножение бактерий

Если бактерии обитают в благоприятной среде, то скорость размножения бактерий пропорциональна размеру популяции. Такое предположение описывается дифференциальным уравнением: где х – количество бактерий; k – коэффициент пропорциональности. Тогда, разделяя переменные и интегрируя левую и правую части уравнения получим: где N0 – начальное количество бактерий; N — количество бактерий в момент времени t.

Вычислим определённые интегралы:

Получим экспоненциальную кривую, которая зависит от времени и k. Если то количество бактерий будет возрастать по экспоненциальному закону, при , а при — оставаться на постоянном уровне.

N
N0
k 0
t

Для определения значения k необходимо иметь дополнительные сведения об изменении численности бактерий за определённый промежуток времени.

Внутривенное введение глюкозы

При внутривенном введении с помощью капельницы скорость поступления глюкозы в кровь постоянна и равна с. В крови глюкоза разлагается и удаляется из кровеносной системы со скоростью, пропорциональной имеющемуся количеству глюкозы. Тогда дифференциальное уравнение, описывающее этот процесс, имеет вид: где х – количество глюкозы в крови в текущий момент времени; с – скорость поступления глюкозы в кровь; — положительная постоянная. Запишем это уравнение в виде:

Это неоднородное линейное дифференциальное уравнение первого порядка, и его общее решение находиться по формуле:

где k- постоянная интегрирования. Чтобы найти постоянную k, необходимо знать начальное значение глюкозы в крови х (0).

Тогда .

Частное решение уравнения имеет вид:

При увеличении времени уровень глюкозы в крови приближается к .

Использование и применение дифференциальных уравнений

Дифференциальные уравнения. Тезисы. Примеры применений.

Тип публикации: Тезисы

Язык: Русский

Enter the password to open this PDF file:

Григоренко М.Н., Уральский государственный экономический университет, г. Екатеринбург Дифференциальные уравнения и их применение Изучая разделы математики можно рассматривать решение задач с использованием математического аппарата, например таких как, методы расчета рисковых оптимального временного ситуаций, использования ряда [2]. Более выбор оптимального ресурсов, анализ подробно портфеля, и задачи прогнозирование рассмотрим применение дифференциальных уравнений. Дифференциальные уравнения — раздел математики, изучающий теорию и способы решения уравнений, содержащих искомую функцию и ее производные различных дифференциальные) или порядков одного нескольких аргумента аргументов (обыкновенные (дифференциальные уравнения в частных производных) [1]. В самом уравнении участвует не только неизвестная функция, но и различные ее производные. Дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике и др. Дифференциальные уравнения применяются для математического описания природных явлений. Так, например, в биологии дифференциальные уравнения применяются для описания популяции; в физике многие законы можно описать с помощью дифференциальных уравнений. Широкое применение находят дифференциальные уравнения и в моделях экономической динамики. В данных моделях отражается не только зависимость переменных от времени, но и их взаимосвязь во времени. Рассмотрим одну из задач макроэкономической динамики [1]. Например, пусть y(f) — объем продукции некоторой отрасли, реализованной к моменту времени t. Будем полагать, что вся производимая отраслью продукция реализуется по некоторой фиксированной цене р, т.е. выполнено условие ненасыщаемости рынка. Тогда доход к моменту времени t составит Y (t )  py(t ) Обозначим через I(t) величину инвестиций, направляемых на расширение производства. В модели естественного роста полагают, что скорость выпуска продукции (акселерация) пропорциональная величине инвестиций, т.е. y’ (t )  lI (t ) , где 1/l – норма акселерации. (Здесь мы пренебрегаем временем между окончанием производства продукции и ее реализацией, то есть считаем, что инвестиционный лаг равен нулю). Полагая, что величина инвестиций I(t) составляет фиксированную часть дохода, получим I (t )  mY (t )  mpy(t ) , где коэффициент пропорциональности m (так называемая норма инвестиций) — постоянная величина ( 0  m  1 ). Подставляя последнее выражение для I(t) в y’ (t )  lI (t ) приходим к уравнению y’  ky , где k  mpl . Полученное дифференциальное уравнение — с разделяющимися переменными. Решая его, приходим к функции y(t )  y0 e k ( t t0 ) , где y0  y(t 0 ) . Заметим, что уравнение y’  ky описывает также рост народонаселения, динамику роста цен при постоянной инфляции, процесс радиоактивного распада и др. Модель роста в условиях роста конкурентного рынка имеет вид y’ mlp( y) y . Научный руководитель Кныш А.А., старший преподаватель Список литературы: 1. Высшая математика для экономического бакалавриата: учебник и практикум / Н. Ш. Кремер, Б. А. Путко, И. М. Три-шин, М. Н. Фридман; под ред. Н. Ш. Кремера. – М.: Издательство Юрайт; ИД Юрайт, 2012. — 909 с. 2. Кныш А.А. Примеры реализации межпредметных связей на занятиях математики в экономическом вузе // Новая наука: от идеи к результату. — Стерлитамак: АМИ, 2017. — №2 (2) – С. 55 – 57.


источники:

http://lektsii.org/11-51390.html

http://vernsky.ru/pubs/differentsialnye-uravneniya-i-ih-primenenie-592e3104f2ad471e773c71e3