Использование неравенств при решении уравнений

Алгебра. Урок 8. Неравенства, системы неравенств.

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Неравенства
  • Линейные неравенства

Неравенства

Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:

≥ больше или равно,

≤ меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой .

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной .

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

НеравенствоГрафическое решениеФорма записи ответа
x cx ∈ ( − ∞ ; c )
x ≤ cx ∈ ( − ∞ ; c ]
x > cx ∈ ( c ; + ∞ )
x ≥ c

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a 0 , то знак неравенства меняется на противоположный , неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство 3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на ( -3 ) – коэффициент, который стоит перед x . Так как − 3 0 , знак неравенства поменяется на противоположный . x 12 − 3 ⇒ x − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на ( 3 ) – коэффициент, который стоит перед x . Так как 3 > 0, знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 6 x ≤ − 1 + 1

Получили верное неравенство, которое не зависит от переменной x . Возникает вопрос, какие значения может принимать переменная x , чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

Ответ:

  1. x – любое число
  2. x ∈ ( − ∞ ; + ∞ )
  3. x ∈ ℝ

№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

x + 6 − 9 x > − 8 x + 48

− 8 x + 8 x > 48 − 6

Получили неверное равенство, которое не зависит от переменной x . Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

Квадратные неравенства

Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем a ≠ 0, x — переменная.

Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

Алгоритм решения квадратного неравенства методом интервалов

  1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
  1. Отметить на числовой прямой корни трехчлена.

Если знак неравенства строгий > , , точки будут выколотые.

Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

  1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A ) и подставить её значение в выражение a x 2 + b x + c вместо x .

Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

  1. Выбрать подходящие интервалы (или интервал).

Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

Если знак неравенства или ≤ в ответ выбираем интервалы со знаком -.

Примеры решения квадратных неравенств:

№1. Решить неравенство x 2 ≥ x + 12.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 1, c = − 12

D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6 . Подставляем эту точку в исходное выражение:

x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

Это значит, что знак на интервале, в котором лежит точка 6 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

Точки -3 и 4 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

№2. Решить неравенство − 3 x − 2 ≥ x 2 .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = − 2

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

x 1 = − 2, x 2 = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 0

Это значит, что знак на интервале, в котором лежит точка 0 будет − .

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.

Точки -2 и -1 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ [ − 2 ; − 1 ]

№3. Решить неравенство 4 x 2 + 3 x .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = 4

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 0

Это значит, что знак на интервале, в котором лежит точка 2 , будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервалы со знаком − .

Точки -4 и 1 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

№4. Решить неравенство x 2 − 5 x 6.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 5, c = − 6

D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0

Это значит, что знак на интервале, в котором лежит точка 10 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком -.

Точки -1 и 6 будут в круглых скобках, так как они выколотые

Ответ: x ∈ ( − 1 ; 6 )

№5. Решить неравенство x 2 4.

Решение:

Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3 . Подставляем эту точку в исходное выражение:

x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

Это значит, что знак на интервале, в котором лежит точка 3 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком − .

Точки -2 и 2 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 2 ; 2 )

№6. Решить неравенство x 2 + x ≥ 0.

Решение:

Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.

x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1 . Подставляем эту точку в исходное выражение:

x 2 + x = 1 2 + 1 = 2 > 0

Это значит, что знак на интервале, в котором лежит точка 1 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

Дробно рациональные неравенства

Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

Примеры дробно рациональных неравенств:

x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

Алгоритм решения дробно рациональных неравенств:

  1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

  1. Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя .
  1. Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя .

В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

  1. Нанести нули числителя и нули знаменателя на ось x .

Вне зависимости от знака неравенства
при нанесении на ось x нули знаменателя всегда выколотые .

Если знак неравенства строгий ,
при нанесении на ось x нули числителя выколотые .

Если знак неравенства нестрогий ,
при нанесении на ось x нули числителя жирные .

  1. Расставить знаки на интервалах.
  1. Выбрать подходящие интервалы и записать ответ.

Примеры решения дробно рациональных неравенств:

№1. Решить неравенство x − 1 x + 3 > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравниваем числитель к нулю f ( x ) = 0.

x = 1 — это ноль числителя . Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

  1. Приравниваем знаменатель к нулю g ( x ) = 0.

x = − 3 — это ноль знаменателя . При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства) .

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,

Это значит, что знак на интервале, в котором лежит точка 2 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

№2. Решить неравенство 3 ( x + 8 ) ≤ 5.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Привести неравенство к виду f ( x ) g ( x ) ≤ 0.

3 ( x + 8 ) − 5 \ x + 8 ≤ 0

3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 x − 40 x + 8 ≤ 0

− 5 x − 37 x + 8 ≤ 0

  1. Приравнять числитель к нулю f ( x ) = 0.

x = − 37 5 = − 37 5 = − 7,4

x = − 7,4 — ноль числителя . Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = − 8 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0

Это значит, что знак на интервале, в котором лежит точка 0 будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.

В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

№3. Решить неравенство x 2 − 1 x > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравнять числитель к нулю f ( x ) = 0.

( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

x 1 = 1, x 2 = − 1 — нули числителя . Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = 0 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

Системы неравенств

Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

Пример системы неравенств:

Алгоритм решения системы неравенств

  1. Решить первое неравенство системы, изобразить его графически на оси x .
  1. Решить второе неравенство системы, изобразить его графически на оси x .
  1. Нанести решения первого и второго неравенств на ось x .
  1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

Примеры решений систем неравенств:

№1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 4 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.

Графическая интерпретация решения:

Точка 2 на графике жирная, так как знак неравенства нестрогий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на отрезке от 2 до 4 . Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

№2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 3 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

3 x − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

Точка -1 на графике выколотая, так как знак неравенства строгий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

Ответ: x ∈ ( − ∞ ; − 1 )

№3. Решить систему неравенств < 3 x + 1 ≤ 2 x x − 7 >5 − x

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения:

  1. Решаем второе неравенство системы

2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

№4. Решить систему неравенств < x + 4 >0 2 x + 3 ≤ x 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения первого неравенства:

  1. Решаем второе неравенство системы

Решаем методом интервалов.

a = − 1, b = 2, c = 3

D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

D > 0 — два различных действительных корня.

x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

Графическая интерпретация решения второго неравенства:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .

Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

Неравенства — определение и вычисление с примерами решения

Содержание:

Неравенства

Существует много задач, при решении которых нужно сравнить некоторые числа или величины, найти значения переменной, удовлетворяющие некоторому неравенству.

В этом параграфе мы выясним свойства числовых неравенств, как доказывать неравенства, что такое неравенство с переменной и система неравенств с переменной, как решать неравенства и их системы.

Числовые неравенства

Вы знаете, что записи

являются примерами числовых неравенств. Вы научились сравнивать натуральные числа, дроби, рациональные и действительные числа.

Известно, что 25 > 17. Найдем разность левой и правой частей этого неравенства:

25 — 17 = 8 > 0 — разность положительна.

Найдем разность левой и правой частей неравенства 7 10:

7 — 10 = -3 0 — разность отрицательна.

Из равенства 15=15 имеем:

15-15 = 0 — разность равна нулю.

Следовательно, существует зависимость между соотношениями «>», «», «=» и значением разности левой и правой частей соответствующего неравенства (равенства). Эту зависимость выражает определение.

Определение:

  • Число а больше числа b, если разность а — b — положительное число;
  • Число а меньше числа b, если разность аb — отрицательное число;
  • Число а равно числу b, если разность а — b равна нулю.

Так как разность чисел а и b может быть либо положительной, либо отрицательной, либо равна нулю, то для любых чисел а и b выполняется одно и только одно из трех соотношений: а > b, a b или а = b.

Используя данное определение, сравним числа и . Для этого найдем их разность:

Разность данных чисел — число положительное, поэтому > .

Следовательно, для сравнения двух чисел а и b достаточно образовать разность а — b и выяснить, является она положительным числом, отрицательным числом или нулем. Если а — b > 0, то а > b; если а — b 0, то а b; если а — b = 0, то а = b.

На координатной прямой большее число изображают точкой, которая лежит правее точки, изображающей меньшее число (см. рис. 1).

Рис. 1

В неравенствах используют знаки: «>» — меньше, «>» — больше, « »— меньше или равно (не больше), «» — больше или равно (не меньше).

Неравенства, образованные при помощи знаков «» или «>», называют строгими неравенствами, а неравенства, образованные при помощи знаков «» или «», называют нестрогими.

Из определения соотношений «больше», «меньше», «равно» следует, что а b, если a — b 0; a b, если а — b 0.

Числовые неравенства могут быть верными и неверными. Например, 5 8; 1,2 -1 — верные неравенства, 21 > 30 — неверное неравенство.

Доказательство неравенств

Докажем, что при любом значении а справедливо неравенство

(Еще говорят: докажем неравенство а(а — 4) (а — 2)².)

Для этого образуем разность левой и правой частей неравенства и преобразуем ее:

а(а — 4) — (a — 2)² = а² — 4а — а² + 4а — 4 = -4.

Так как разность а(а — 4) — (а — 2)² отрицательна при любом значении а, то неравенство а(а — 4) (а — 2)² справедливо также при любом значении а.

Пример:

Доказать неравенство, если .

Решение:

Образуем разность левой и правой частей неравенства и преобразуем ее:

Разность мы представили в виде дроби, числитель которой неотрицателен, так как он является квадратом некоторого числа, а знаменатель положителен как произведение положительных чисел. Поэтому эта дробь, а значит и разность, неотрицательны: . Следовательно, неравенство справедливо при любых положительных числах а и b.

Если в доказанном неравенстве принять, что b = 1, то получим верное неравенство:

Итак, сумма двух положительных взаимно обратных чисел не меньше 2.

Пример:

Доказать неравенство

Решение:

Образуем разность левой и правой частей неравенства и преобразуем ее:

Следовательно,

Для положительных чисел а и b число называют их средним геометрическим (или средним пропорциональным). Неравенство

справедливо и при любых положительных числах а и b. 11оэтому среднее арифметическое двух положительных чисел не меньше их среднего геометрического.

Пример:

Доказать, что неравенство 10a² -6а + 2ab + + 2 > 0 справедливо при любых действительных числах а и b.

Решение:

Так как (3а — 1 )² 0, (а + b 0 при любых действительных числах а и b, то (За — 1)² + (а + b)² + 1 > 0.

Примечание. При доказательстве неравенства при помощи определения соотношений «больше», «меньше» или «равно» разность левой и правой части неравенства нужно преобразовать так, чтобы можно было определить знак разности.

Выражение, полученное после преобразований, принимает неотрицательные значения, если оно является, например, суммой, произведением или частным неотрицательных чисел, четной степенью некоторого выражения и т. п.

Выражение принимает отрицательные значения, если оно является суммой отрицательных чисел, произведением или частным чисел разных знаков и т. п.

Свойства числовых неравенств

Свойство 1 | Если а > b, то b а.

Доказательство: Если а > b, то а — b — положительное число. Противоположное ему число — (аb) = bа является отрицательным. Так как b — а 0, то b а.

Свойство 2 | Если а b и b с, то а с.

Доказательство: По условию а b и b с, поэтому a — b и b — с — отрицательные числа. Сумма двух отрицательных чисел является отрицательным числом, поэтому (а — b) + (b — с) = а — b + b — с = а — с 0. Так как а — с 0, то а с.

Геометрическая иллюстрация свойства 2 представлена на рисунке 3.

Рис.3

Аналогично можно доказать утверждение: если а > b и b > с, то а > с.

Свойство 3 | Если к обеим частям верною неравенства прибавить одно и то же число, то получим верное неравенство.

Доказательство: Пусть а b и с — любое число. Докажем, что а + с b + с. Рассмотрим разность (а + с) — (b + с) = а + с — b — с = а — b. Так как а b, то а — b 0. Следовательно, (а + с) — (b+ с) 0, поэтому а + с b + с.

Аналогично проводится доказательство для случая а > b и любого числа с.

Следствие. Если некоторое слагаемое перенести из одной части верного неравенства в другую, изменив при этом знак слагаемого на противоположный. то получим верное неравенство.

Доказательство: Пусть а b + с — верное неравенство. Прибавим к обоим ее частям число , получим верное неравенство а + (-с) b + с + (-с) или а — с b. Итак, если перенести слагаемое с в левую часть неравенства, изменив его знак на противоположный, то получим верное неравенство.

Свойство 4 | Если обе части верною неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство. Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.

Доказательство: Пусть а b. Докажем, что ас bc, если с — положительное число, и ас > bc. если с — отрицательное число. Рассмотрим разность:

По условию а b, поэтому а — b 0. F.c л и с > 0, то и произведении с(а — b) первый множитель положительный, а второй — отрицательный. Поэтому с(а — b) 0. В данном случае ас — bc 0, откуда ас bc.

Если c 0, то произведение с(a — b) положительно как произведение двух отрицательных множителей. Тогда и ас — bc > 0, откуда ас > bс.

Аналогично проводится доказательство, если имеем неравенство а > b.

Справедливой является и часть свойства, касающаяся деления обеих частей неравенства на некоторое число, так как деление можно заменить умножением на число, обратное делителю.

Следствие. Если a и b — положительные числа и а b, то

Доказательство: Разделим обе части неравенства а b на положительное число ab. Получим:

Это следствие можно использовать при сравнении чисел, обратных данным. Например, поскольку .

Замечание. Двойное неравенство а b с можно записать в виде двух неравенств: а b и b с. Если а b и b с, то для любого числа m справедливы неравенства: а + m b + m и b + m с + m, откуда а + m b + m с + m.

Итак, если ко всем частям верного двойною неравенства прибавить одно и то же число, то получим верное двойное неравенство.

Аналогично можно обосновать утверждения:

  • если аbс и m > 0, то ambmcm;
  • если аbс и m0, то am > bm > сm, то есть cmbmam.

Пример:

Известно, что 1 x 3. Оцените значение выражения:

а) х — 3; б) -х; в) 2х — 5.

Решение:

а) Прибавим ко всем частям неравенства -1 х 3 число -3, получим:

—1 — 3 x — 3 3 — 3, откуда -4 х — 3 0.

б) Умножим все части неравенства -1 x 3 на -1, получим:

1 > -х > -3, или -3 1.

в) Умножим все части заданного неравенства на 2, получим: -2 6. Теперь прибавим ко всем частям полученного неравенства число -5, получим:

-2 — 5 2х — 5 6 — 5, откуда -7 2х — 5 1.

Пример:

Доказать, что а³ + 1 а² + а, если а -1.

Решение:

Образуем разность левой и правой частей неравенства и преобразуем её:

Значения выражения (а — 1)² являются неотрицательными. По условию а -1, прибавим к обеим частям этого неравенства число 1, получим: а + 1 0. Поэтому

Следовательно, если а -1, то неравенство а³ + 1 а² + а является верным.

Сложение и умножение числовых неравенств. Оценка значений выражений

Рассмотрим действия, которые можно выполнять над верными числовыми неравенствами.

Сложение числовых неравенств

Возьмем верные числовые неравенства с одинаковыми знаками: -3 4 и 5 7. Сложим эти неравенства почленно. Получим верное неравенство того же знака, а именно: -3 + 5 4 + 7 или 2 11. В общем случае справедливо такое свойство:

Свойство 5 | Если почленно сложить верные неравенства одного знака, сохранив их общий знак, то получим верное неравенство.

Доказательство: Пусть а b и с d. Нужно доказать, что а + с b + d. Чтобы получить сумму а + с, прибавим к обеим частям первого неравенства число с, а чтобы получить сумму b + d, прибавим к обеим частям второго неравенства число b. Получим верные неравенства: а + с b + с, b + с b + d. По свойству 2 из последних двух неравенств следует, что а + с b + d.

Аналогично можно доказать, что если а > b и с > d, то а + с > b + d.

Умножение числовых неравенств

Возьмем верные неравенства: 7 > 2 и 5 > 3. Почленно перемножим их. Получим верное неравенство 7 • 5 > 2 • 3 или 35 > 6.

Почленно перемножим неравенства -3 1 и -4 6. Получим неверное неравенство 12 6.

В первом случае все числа данных неравенств были положительными, во втором — положительными и отрицательными. Докажем следующее свойство.

Свойство 4 | Если почленно перемножить верные неравенства одного знака, левые и правые части которых — положительные числа, сохранив при этом их общий знак, то получим верное неравенство.

Доказательство: Пусть а b и с d, где a, b, c и d — положительные числа. Нужно доказать, что ас bd. Умножим обе части неравенства а b на положительное число с, а обе части неравенства c d — на положительное число b. Получим верные неравенства: ас be, be bd. По свойству 2 из последних двух неравенств следует, что ас bd.

Аналогично можно доказать, что если а > b и с > d, где а, b, с и d — положительные числа, то ас > bd.

Следствие. Если а b, а и b — положительные числа, n — натуральное число, то

При доказательстве следствия достаточно взять н неравенств а b и почленно их перемножить.

Оценка значений выражений

Пример:

Дано: 11 x 14 и 1 у 2. Оценить: а) сумму х + у; б) разность х — у; в) произведение xy; г) частное .

Решение:

а) Оценим сумму х + у.

Применим к неравенствам 11 х и 1 у свойство о почленном сложении неравенств. Получим: 12 х + у. Применим это же свойство к неравенствам х 14 и у 2. Получим: х + у 16. Результат запишем в виде двойного неравенства 12 х + у 16.

Сокращенно эти преобразования записывают так:

Общая схема оценки суммы имеет такой вид:

б) Оценим разность х — у.

Зная, как оценивается сумма, представим разность х — у в виде суммы х + (-у).

Сначала оценим значение выражения . Умножив все части неравенства 1 у 2 на -1, получим: -1> —у > -2 или -2 у -1. Согласно свойству о почленном сложении неравенств получим:

Общая схема оценки разности имеет такой вид:

в) Оценим произведение ху.

Поскольку 11 х 14 и 1 у 2, то х и у — положительные числа. Применим к неравенству 11 х и 1 у свойство о почленном умножении неравенств. Получим: 11 ху. Применим это же свойство к неравенствам х 14 и y 2. Получим: ху 28. Результат запишем в виде двойного неравенства 11 ху 28.

Сокращенно эти преобразования записывают гак:

Общая схема оценки произведения имеет такой вид:

г) Оценим частное .

Представим частное в виде произведения . Поскольку 1 у 2,

то или . Согласно свойству о почленном умножении неравенств получим:

то есть .

Общая схема оценки частного имеет такой вид:

Пример:

Доказать неравенство (m + n)(mn + l) 4mn, где m 0, n 0.

Решение:

Используем известное неравенство , где а 0, b 0.

Запишем это неравенство для чисел m и n, а потом — для чисел mn и 1. Получим два верных неравенства:

Умножим обе части каждого неравенства на 2:

Почленно перемножив эти неравенства, получим:

Примечание. При доказательстве неравенства из примера 1 мы использовали известное неравенство, доказанное ранее. Особенность использованного способа доказательства неравенств состоит в том, что:

  1. записываем несколько неравенств, доказанных ранее;
  2. перемножив (или сложив) эти неравенства, приходим к доказываемому неравенству.

Неравенства с одной переменной. Числовые промежутки

Понятие о неравенстве с одной переменной и его решении

Рассмотрим неравенство 2х + 5 > 11. При одних значениях x данное неравенство превращается в верное числовое неравенство, при других — в неверное. Например, при х = 5 получим верное числовое неравенство 2 • 5 + 5 > 11; 15 > 11, а при х = 1 получим неверное числовое неравенство 2 • 1 + 5 > 11; 7 > 11.

Если нужно найти все значения х, при которых неравенство 2х + 5 > 11 является верным, то говорят, что нужно решить неравенство 2х + 5 > 11, содержащее одну переменную х.

При х = 5 неравенство 2х + 5 > 11 является верным. Говорят, что число 5 является решением данного неравенства или удовлетворяет данному неравенству.

Определение: Решением неравенства с одной переменной называют значение переменной, превращающее его в верное числовое неравенство.

Решить неравенство значит найти все его решения или доказать, что решений нет.

Неравенство с одной переменной преимущественно имеет бесконечное множество решений. Так, решениями неравенства 2х + 5 > 11 являются числа

и т. п. Множества решений неравенства иногда можно записывать в виде числовых промежутков.

Числовые промежутки

Рассмотрим несколько примеров.

1) Неравенству -2 х 3 удовлетворяют все действительные числа больше -2 и меньше 3, то есть все действительные числа, лежащие на числовой прямой между числами -2 и 3. Множество всех чисел, удовлетворяющих двойному неравенству -2 х 3, называют числовым промежутком или просто промежутком и обозначают (-2; 3) (читают: «промежуток от -2 до 3»). На координатной прямой его изображают так:

Рис. 4

Промежуток заштриховывают, точки -2 и 3 изображают «пустыми» («выколотыми»).

Число 2,2 удовлетворяет двойному неравенству -2 х 3, а число 4 ему не удовлетворяет. Говорят, что число 2,2 принадлежит промежутку (-2; 3), а число 4 ему не принадлежит.

Рис. 5

2) Неравенству -2 х 3 удовлетворяют все действительные числа, которые лежат между числами -2 и 3 или равны числам -2 или 3. Множество таких чисел обозначают так: [-2; 3] (читают: «промежуток от -2 до 3, включая -2 и 3»). На координатной прямой его изображают так:

Рис. 6

3) Множества чисел, удовлетворяющих двойным неравенствам -2 х 3 и -2 х 3, обозначают соответственно [-2; 3) и (-2; 3] (читают: «промежуток от -2 до 3, включая -2» и «промежуток от -2 до 3, включая 3»). Эти промежутки изображают на координатной прямой так:

Рис. 7 а Рис. 7 б

4) Неравенству х >4 удовлетворяют все действительные числа больше 4. На координатной прямой чти числа изображают точками, лежащими справа от точки с координатой 4. Множество чисел, удовлетворяющих неравенству х > 4, изображают полупрямой, находящейся справа от точки с координатой 4 без этой точки (см. рис. 8). Такое множество называют промежутком от 4 до плюс бесконечности и обозначают (4; ).

*Рис. 8

Множество чисел, удовлетворяющих неравенству х 4, изображают полупрямой (см. рис. 9). Это множество обозначают [4; ) (читают: «промежуток от 4 до плюс бесконечности, включая 4»),

Рис. 9

5) Множество чисел, удовлетворяющих неравенству х 8, записывают (; 8) и читают «промежуток от минус бесконечности до 8». Множество чисел, удовлетворяющих неравенству х 8, записывают (; 8] и читают: «промежуток от минус бесконечности до 8, включая 8». На координатной прямой эти числовые промежутки изображают гак:

Рис. 10 а

Рис. 10 б

6) Множество всех действительных чисел изображают всей координатной прямой и обозначают так:

Объединение и пересечение числовых промежутков

Рассмотрим два промежутка: [-1; 4) и (2; 7).

Рис. 11

Промежуток [-1; 7) образуют все числа, принадлежащие промежутку [-1; 4) или промежутку (2: 7). Говорят, что промежуток [-1; 7) является объединением промежутков [-1;4) и (2; 7). Записывают: , где — знак объединения.

Определение: Объединением числовых промежутков называют множество всех чисел, принадлежащих хотя бы одному из этих промежутков.

Промежуток (2; 4) образуют все общие числа из промежутков [-1; 4) и (2; 7), то есть все числа, принадлежащие каждому из промежутков [-1; 4) и (2; 7). Говорят, что промежуток (2; 4) является пересечением промежутков [-1; 4) и (2; 7). Записывают:, где — знак пересечения.

Определение: Пересечением числовых промежутков называют множество всех чисел, принадлежащих каждому из этих промежутков.

Для тех, кто хочет знать больше.

Объединением и пересечением двух числовых промежутков могут быть не числовые промежутки. Рассмотрим, например, промежутки [-2; 1] и (3;4). Чисел, принадлежащих обоим этим промежуткам, пет (см. рис. 12). Поэтому говорят, что пересечением этих промежутков является пустое множество. Его обозначают символом. Записывают: . Объединением промежутков [-2; 1] и (3; 4) является множество , не являющееся числовым промежутком (оно «состоит» из двух промежутков).

Для промежутков множество общих чисел содержит только одно число — число 1 (см. рис. 13). Такое множество обозначают так: <1>. Записывают: . Легко найти, что .

Рис. 13

Пример:

Указать наименьшее и наибольшее действительные числа, принадлежащие промежутку:

Решение: а) ;

б) -2; наибольшего действительно числа, принадлежащего этому промежутку, нет. (Это следует из таких соображений. Предположим, что m — наибольшее число из промежутка [-2; 3). Так как m 3, то можно рассматривать промежуток (m; 3), любое число из которого больше m. Следовательно, число m на промежутке [-2; 3) не является наибольшим.);

в) наименьшего числа нет; 4,8;

г) ни наименьшего, ни наибольшего чисел нет.

Пример:

Отметить на координатной прямой множество чисел, удовлетворяющих неравенству, и записать это множество в виде промежутка или объединения промежутков: а) ; б) .

Решение:

а) Модулем числа х является расстояние от начала отсчета до точки, изображающей число х на координатной прямой. Поэтому решениями данного неравенства являются числа, соответствующие тем точкам координатной прямой, которые лежат от начала отсчета на расстоянии не больше 5.

Следовательно, решениями неравенства являются все числа, принадлежащие промежутку [-5; 5].

б) Решениями неравенства являются числа, которым соответствуют те точки координатной прямой, которые лежат от начала отсчета на расстоянии не меньше 5 (больше 5 или равном 5), то есть значения х, удовлетворяющие неравенству или неравенству .

Следовательно, множеством решений неравенства является объединение промежутков, то есть

Решение неравенств с одной переменной. Равносильные неравенства

Пример:

Одна сторона участка прямоугольной формы на 5 м длиннее другой. Какими могут быть стороны участка, чтобы для его ограждения хватило сетки длиной 46 м?

Решение:

Пусть длина меньшей стороны участка равна х м, тогда длина большей —

(х + 5 )м, а периметр участка — 2(х + х + 5) = (4х + 10) (м). По условию периметр не превышает 46 м. поэтому 4х + 10 46.

Чтобы найти стороны участка, нужно решить неравенство 4х + 10 46 с одной переменной х.

При решении неравенства его преобразуют, заменяя более простыми неравенствами с теми же решениями.

Неравенства, имеющие одни и тс же решения, называют равносильными. Неравенства, не имеющие решений, также называют равносильными.

Замену неравенства равносильным» ему неравенствами выполняют на основании таких свойств:

  1. если выполнить тождественные преобразования некоторой чисти неравенства, которые не меняют допустимые значения переменной, то получим неравенство, равносильное данному;
  2. если из одной части неравенства перенести в другую часть слагаемое, uxwhug его знак ни противоположный, то получим неравенство, равносильное данному;
  3. если обе чисти неравенства умножить или разделить на одно и то же положительное число, то получим неравенство, равносильное данному;
  4. если обе чисти неравенства умножить или разделить на одно и то же отрицательное число и при этом изменить знак неравенства на противоположный, то получим неравенство, равносильное данному.

Используя эти и свойства, решим неравенство:

Перенесем слагаемое 10 из левой части неравенства в правую с противоположным знаком, получим неравенство

равносильное заданному неравенству.

В правой части неравенства 4х 46 — 10 приведем подобные слагаемые, получим:

Разделив обе части последнего неравенства на 4, получим неравенство

Следовательно, неравенство 4х + 10 46 равносильно неравенству х 9, и ему удовлетворяют все числа не больше 9 (см. рис. 16). Множество решений данного неравенства можно записать в виде числового промежутка .

Рис. 16

Вернемся к задаче. Длину меньшей стороны участка мы обозначили через х м. Поскольку длина стороны выражается положительным числом, то х может принимать значения из промежутка (0; 9|. Итак, меньшая сторона участка не должна превышать 9 м, большая же сторона на 5 м длиннее нее.

Для тех, кто хочет знать больше.

мы перенесли слагаемое 10 из левой части неравенства в правую с противоположным знаком и получили неравенство

Докажем, что неравенства (1) и (2) равносильны.

Пусть х = а — любое решение неравенства (1), тогда 4а + 10 46 — верное числовое неравенство. Перенесем слагаемое 10 из левой части неравенства в правую, изменив его знак на противоположный, получим верное числовое неравенство 4а 46- 10. Из того, что последнее неравенство является верным, следует, что число а является решением неравенства (2).

Пусть х = b — любое решение неравенства (2), тогда 4b 4b — 10 — верное числовое неравенство. Перенесем слагаемое -10 из правой части неравенства в левую, изменив его знак на противоположный, получим верное числовое неравенство 4b + 10 46. Из того, что последнее неравенство является верным, следует, что число b является решением неравенства (1).

Мы показали, что любое решение неравенства (1) является решением неравенства (2) и любое решение неравенства (2) является решением неравенства (1). Поэтому эти неравенства имеют одни и те же решения, то есть являются равносильными.

Равносильность неравенств 4х 46 — 10 и 4х 36, а также неравенств 4х 36 и х 9 доказывают аналогично.

Пример:

Решить неравенство 3(5х— 1)+ 10 > 7 — 2(1 -6х) и отметить на координатной прямой множество его решений.

Решение:

перенесем слагаемые, содержащие переменную, в левую часть неравенства, а остальные — в правую часть:

приведем подобные слагаемые:

разделим обе части неравенства на 3:

Ответ.

Пример:

Решить неравенство , отметить на координатной прямой множество его решений и записать это множество в виде числового промежутка.

Решение:

Умножим обе части неравенства на наименьший общий знаменатель дробей, входящих в неравенство, то есть на 18. Получим:

Ответ, (; 4,2].

Пример:

Решить неравенство .

Решение:

Умножим все части неравенства на 2: -4 3х — 1 10. Прибавим ко всем частям неравенства число 1:

Разделим все части неравенства на 3, получим: .

Ответ. .

Пример:

Решить неравенство:

Решение:

а) Решениями неравенства |2х-3| 5 являются числа, удовлетворяющие двойному неравенству

Прибавим ко всем частям неравенства число 3, получим:

Разделим все части неравенства на 2:

б) Модуль числа — число неотрицательное, поэтому модуль числа не может быть меньше числа -4. Неравенство |3х — 1| -4 не имеет решений.

Ответ. Решений нет.

в) Выражение 2х — 1, стоящее под знаком модуля, должно принимать значения меньше-5 или больше 5. Итак, 2х — 1 -5 или 2х- 1 > 5.

Если нужно найти все значения х, удовлетворяющие неравенству 2х — 1 -5 или неравенству 2х — 1 > 5, то говорят, что нужно решить совокупность неравенств, которую записывают гак:

Решая каждое неравенство совокупности, получим:

Решениями совокупности являются значения х, удовлетворяющие неравенству х -2 или неравенству х > 3.

Ответ. х -2 или х > 3. (Ответ можно записать и в виде объединения промежутков:

Линейные неравенства с одной переменной

Рассмотрим несколько примеров.

Пример:

Решить неравенство .

Решение:

Множеством решений неравенства является числовой промежуток

Ответ.

Пример:

Решить неравенство

Решение:

При любом значении х значение левой части неравенства 0 • х > -8 равно нулю, а нуль больше -8. Поэтому множеством решений данного неравенства является множество всех действительных чисел, то есть промежуток

Ответ.

Пример:

Решить неравенство .

Решение:

Неравенство 0 • х — 5 не имеет решений, так как при любом х значение

ее левой части равно нулю, а нуль не меньше -5.

Ответ. Решений нет.

В результате преобразований мы привели первое неравенство к неравенству 15х 30, второе — к неравенству 0 • х > -8, третье — к неравенству О • х -5. Неравенства такого вида называют линейными неравенствами с одной переменной.

Неравенства вида ах > b, ax>b, ах b, ах b, где а и b — некоторые известные числа, а х — переменная, называют линейными неравенствами с одной переменной.

Если ,то для решения линейного неравенства с одной переменной нужно разделить обе части неравенства на а. Если то или решением неравенства является любое число, или неравенство не имеет решений. Выделим следующие основные шаги решения неравенств:

  1. если неравенство содержит дроби, то обе части неравенства умножает на наименьший общий знаменатель дробей, входящих в неравенство;
  2. если в неравенства есть скобки, то раскрываем их;
  3. переносим слагаемые, содержащие переменную, в одну часть неравенства (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (как правило, в правую);
  4. приводим подобные слагаемые;
  5. если получили линейное неравенство и коэффициент при переменной не равен нулю, то делим на него обе части неравенства;
  6. если коэффициент при переменной равен нулю, то неравенство или не имеет решений, или его решением является любое число.

Пример:

Найти область определения функции .

Решение:

Область определения функции образуют те значения х, при которых выражение 8 — 2х принимает неотрицательные значения. Следовательно, нужно решить неравенство 8 — 2х 0. Получим:

Областью определения функции является промежуток .

Ответ.

Пример:

Решить неравенство (а + 3)х 5 с параметром а.

Решение:

Рассмотрим три случая: 1) а + 3 0; 2) а + 3 = 0; 3) а + 3 > 0.

1) Если а + 3 0, то есть а -3, то, разделив обе части неравенства на отрицательное число а + 3, получим:

2) Если а + 3 = 0, то есть а = -3, то получим неравенство 0 • х 5, решением которою является любое число.

3) Если а + 3 > 0. то есть а > —3, то

Ответ. Если а -3, то ; если а = -3, то решением неравенства является любое число; если а > -3, то

Системы линейных неравенств с одной переменной

Понятие системы неравенств с одной переменной и ее решения

Пример:

Одна хозяйка купила на рынке 10 кг помидоров и заплатила за них больше 18 руб. Вторая хозяйка купила такие же помидоры и заплатила за 5 кг меньше 14 руб. По какой цене покупали помидоры хозяйки?

Решение:

Пусть цена 1 кг помидоров х руб., тогда 10 кг стоят 10х руб., что по условию задачи больше 18 руб., то есть 10х > 18.

5 кг помидоров стоят 5х руб., что по условию задачи меньше 14 руб., то есть 5х 14.

Чтобы решить задачу, нужно найти те значения х, при которых верным будет как неравенство 10х > 18, так и неравенство 5х 14.

Если нужно найти те значения переменной, которые удовлетворяют двум неравенствам, то говорят, что нужно решить систему неравенств. Для нашей задачи систему записывают так:

Решив каждое из неравенств системы, получим:

Следовательно, значения х должны удовлетворять условию 1,8 х 2.8, то есть цена 1 кг помидоров больше 1 руб. 80 к., но меньше 2 руб. 80 к.

Значение х = 2 является решением обоих неравенств системы

поскольку каждое из числовых неравенств 10 • 2 > 18 и 5 • 2 14 является

верным. Такое значение х называют решением системы неравенств.

Определение: Решением системы неравенств с одной переменной называют значение переменной, при котором выполняется каждое из неравенств системы.

Решить систему неравенств значит найти все ее решения или доказать, что их нет.

Решение систем линейных неравенств с одной переменной

Пример:

Решить систему неравенств

Решение:

Решим каждое из неравенств системы:

Отметим на координатной прямой множество чисел, удовлетворяющих первому неравенству последней системы, — промежуток , и множество чисел, удовлетворяющих второму неравенству, — промежуток .

Общими решениями неравенств являются значения х, принадлежащие обеим промежуткам, то есть их пересечению:

Пример:

Решить систему неравенств

Решение:

На координатной прямой отметим множество чисел, удовлетворяющих неравенству , и множество чисел, удовлетворяющих неравенству .

Общими решениями неравенств являются значения х, принадлежащие промежутку

Ответ.

Пример:

Решить систему неравенств

Решение:

На координатной прямой отметим множество чисел, удовлетворяющих неравенству х > 2, и множество чисел, удовлетворяющих неравенству х -3.

Общих решений неравенства не имеют.

Ответ. Решений нет.

Следовательно, систему линейных неравенств с одной переменной можно решить, используя следующую схему:

  1. решаем каждое неравенство системы;
  2. отмечаем множество решений каждого неравенства на одной координатной прямой;
  3. находим пересечение множеств решений неравенств и записываем множество решений системы в виде промежутка или соответствующего неравенства.

Примечание.

  1. Если система неравенств приводится к виду где аb, то решениями системы являются хa, то есть х меньше меньшего из чисел а и b.
  2. Если система неравенств приводится к виду где а > b, то решениями системы являются x > а, то есть x больше большего из чисел а и b.

Пример:

Решить неравенство .

Решение:

Найдем значения х, при которых значения выражений, стоящих под знаком модуля, равны нулю:

Значения х = -1 и х = 2 разбивают координатную прямую на три промежутка.

Раскроем модули на каждом из промежутков и решим соответствующие неравенство.

1) х —1 или х принадлежит промежутку , что сокращенно записывают так: (знак читают: «принадлежит»). При таких значениях х выражение х + 1 принимает отрицательные значения, поэтому; выражение х — 2 также принимает отрицательные значения, поэтому . Тогда неравенство будет иметь вид .

Решим полученное неравенство:

Кроме того, значения х должны удовлетворять неравенству х -1, а значит, и

системе неравенств Множеством решений этой системы является промежуток (-2.5; -1).

2) , или . Значения выражения х + 1 при таких значениях х неотрицательны, поэтому ; выражение х -2 принимает отрицательные значения, поэтому . Заданное неравенство на промежутке [-1; 2) без знака модуля имеет вид: х + 1 — х + 2 6, откуда 0 • х 3. Решениями последнего неравенства являются любые числа. Поэтому все числа из промежутка [-1; 2) являются решениями заданного неравенства.

3) , или На этом промежутке выражения х + 1 и х — 2 принимают неотрицательные значения, поэтому . Заданное неравенство на промежутке без знака модуля запишется так: х + 1 + х — 2 6, откуда 2х 7; х 3,5.

Значения х должны удовлетворять двум неравенствам: и х 3,5, то есть

системе множеством решений которой является промежуток [2; 3,5).

Итак, множеством решений заданного неравенства является объединение промежутков (-2,5; -1), [-1; 2) и |2; 3,5), то есть промежуток (-2,5; 3,5).

Пример:

При каких значениях х имеет смысл выражение

Решение:

Данное выражение имеет смысл при тех значениях х, при которых каждое из выражений 2х + 9 и 5 + х принимает неотрицательные значения. Поэтому искомые значения л должны удовлетворять систему неравенств

Решим полученную систему:

Общими решениями неравенств являются значения х, удовлетворяющие неравенству х > -4,5.

Пример:

Решить неравенство

Решение:

Дробь положительна только тогда, когда ее числитель и знаменатель положительны или когда они оба отрицательны. Поэтому решение данного неравенства сводится к решению двух систем неравенств:

Решениями первой системы являются значения х, удовлетворяющие неравенству х > 2, а второй — неравенству х — 1.

Ответ, х -1 или х > 2. (Множество решений можно записать в виде объединения промежутков:

Замечание. Решение неравенства (х — 2)(х + 1) > 0 также сводится к решению двух систем, приведенных в предыдущем примере. Поэтому множеством решений этого неравенства также является .

Пример:

Решить двойное неравенство .

Решение:

Данное двойное неравенство можно записать в виде системы

Заметим, что двойное неравенство в упражнении 3 можно решать и на основании свойств равносильности неравенств (см. пункт 5, упражнение 3).

Как известно, возникновение чисел обусловлено потребностями практической деятельности человека. Применение чисел требовало умения их сравнивать. Делать это люди научились много тысячелетий назад.

Где в «Началах» Евклида сугубо геометрически было обосновано неравенство , где а и b рассматривались как длины отрезков.

Рассмотрим геометрическую иллюстрацию неравенства

, где а > 0, b > 0.

На отрезке MN длиной а + b как на диаметре построим полуокружность, О — ее центр, МКa, KNb. Проведем перпендикуляры РО и LK к прямой MN, где Р и L — точки полуокружности. Треугольник MLN — прямоугольный , LK — его высота, поэтому .

Отрезок РО — радиус полуокружности, поэтому .

Поскольку .

Это известное неравенство между средним арифметическим и средним геометрическим двух положительных чисел, которое можно распространить па случай большего количества чисел, называют еще неравенством Коши.

Огюстен Луи Коши — известный французский математик. Он является автором более 800 работ по арифметике и теории чисел, алгебре, математическому анализу, теоретической и небесной механике, математической физике и т. п. Были периоды, когда Коши каждую неделю подавал в Парижскую Академию наук новую математическую работу. Скорость, с какой Коши переходил от одного предмета к другому, позволила ему проложить в математике немало новых путей. Многие теоремы, определения, признаки носят его имя.

Приведем еще два известных неравенства, которые, как и неравенство Коши, используют для доказательства многих математических утверждений, в частности, для доказательства других неравенств.

Неравенство Коши — Буняковского:

где — любые действительные числа.

О В. Я. Буняковском читайте в рубрике «Отечественные математики».

где — натуральное число.

Якоб Бернулли — швейцарский математик, профессор Базельского университета. Основные его работы посвящены математическому анализу, но особое внимание ученый уделял теории вероятностей. Немало теорем названы его именем. Бернулли положил начало одному из разделов прикладной математики — математической статистике.

Неравенства

  • В этом параграфе вы узнаете, в каком случае число а считают больше (меньше) числа b, каковы свойства числовых неравенств, в каких случаях можно складывать и умножать числовые неравенства, что называют решением неравенства с одной перемен­ной, решением системы неравенств с одной пере­менной.
  • Вы научитесь оценивать значения выражений, доказывать неравенства, решать линейные неравен­ства и системы линейных неравенств с одной пере­менной.

На практике вам часто приходится сравнивать величи­ны. Например, площадь России (603,7 тыс. км2) больше площади Франции (551 тыс. км2), высота горы Роман-Кош (1545 м) меньше высоты горы Говерлы (2061 м), расстояние от Киева до Харькова (450 км) равно 0,011 длины эква­тора.

Когда мы сравниваем величины, нам приходится срав­нивать числа. Результаты этих сравнений записывают в виде числовых равенств и неравенств, используя знаки =, >, b; если число а меньше числа b, то пишут а b и b > с, то а > с.

Доказательство: Поскольку по условию а > b и b > с, то разности а — b и b — с являются положительными числа­ми. Тогда положительной будет их сумма (а -b) + (b — с). Имеем: (а — b) + (b — с) = а — с. Следовательно, разность а — с является положительным числом, а поэтому а > с.

Аналогично доказывают свойство: если а b и с — любое число, то а + с > b + с.

Доказательство: Рассмотрим разность (а + с) — (b + с). Имеем: (а + с) — (b + с) = а — b. Поскольку по условию а > b, то разность а — b является положительным числом. Следо­вательно, a + c > b+ c.

Аналогично доказывают свойство: если а b + с вер­но. Вычтем из обеих его частей число с. Получим:

Теорема: Если а > b и с — положительное число, то ас > bc. Если а > b и с — отрицательное число, то ас b, следовательно, разность а — b является положительным числом.

Если с > 0, то произведение с (а — b) является положи­тельным числом, следовательно, разность ас — bc является положительной, то есть ас > bc.

Поскольку деление можно заменить умножением то, учитывая теорему 2.3, можно сделать такой вывод.

Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство.

Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и из­менить знак неравенства на противоположный, то получим верное неравенство.

Следствие:

Доказательство: Разделим обе части неравенства а > b на положительное число ab. Получим правильное неравенство , то есть Отсюда

Обратим внимание: требование, чтобы числа а и b были одного знака (ab > 0), является существенным. Действи­тельно, неравенство 5 > -3 верно, однако неравенство — неверно.

В теоремах этого пункта шла речь о строгих неравен­ствах. Нестрогие неравенства также обладают аналогичны­ми свойствами. Например, если — любое число, то

Сложение и умножение числовых неравенств. Оценивание значения выражения

  1. Если с одного поля собрали не менее 40 т пшеницы, а со второго поля — не менее 45 т, то очевидно, что с двух полей вместе собрали не менее 85 т пшеницы.
  2. Если длина прямоугольника не больше, чем 70 см, а ширина — не больше, чем 40 см, то очевидно, что его площадь не больше, чем 2800 см2.

Выводы из этих примеров интуитивно очевидны. Их справедливость подтверждают следующие теоремы.

Теорема: (о почленном сложении неравенств).

Если а > b и с > d, то а + с > b + d .

Доказательство: Рассмотрим разность (а + с) — (b + d). Имеем:

Так как а > b и с > d, то разности а — b и с — d являются положительными числами Следовательно, рассматриваемая разность является положительной, т. е. а + с > b + d

Аналогично доказывается свойство: если а b и с > d (или а b и с d) — неравенствами противоположных знаков.

Говорят, что неравенство а + с > b + d получено из не­равенств а > b и с > d путем почленного сложения.

Теорема: означает, что при почленном сложении верных неравенств одного знака результатом является верное неравенство того же знака.

Отметим, что теорема 3.1 справедлива и в случае по­членного сложения трех и более неравенств. Например, если

Теорема: (о почленном умножении нера­венств). Если а > Ь, с > d и а, и, с, d — положительные числа, то ас > bd.

Доказательство: Рассмотрим разность ас — bd. Имеем: ас — bd = ас — bс + bс — bd = с (а — b) + b (с — d).

По условию а — b > 0, с — d > 0, с > 0, b > 0. Следова­тельно, рассматриваемая разность является положительной. Из этого следует, что ас > bd.

Аналогично доказывается свойство: если а bd получено из неравенств а > b и с > d путем почленного умножения.

Теорема: означает, что при почленном умножении верных неравенств одного знака, у которых левые и пра­вые части — положительные числа, результатом явля­ется верное неравенство того же самого знака.

Обратим внимание: требование, чтобы обе части умно­жаемых неравенств были положительными, является суще­ственным. Действительно, рассмотрим два верных неравен­ства -2 > -3 и 4 > 1. Умножив почленно эти неравенства, получим верное неравенство -8 > -3.

Заметим, что теорема 3.2 справедлива и в случае почлен­ного умножения трех и более неравенств. Например, если — положительные числа, причем то

Следствие: Если — положительные чис­ла, то , где — натурально число.

Доказательство: Запишем верных неравенств а > b :

неравенств

Так как а и b — положительные числа, то можем перемно­жить почленно записанных неравенств. Получим

Заметим, что все рассмотренные свойства неравенств справедливы и в случае нестрогих неравенств:

  • если , то
  • если и — положительные числа, то
  • если — положительные числа, то , где — натуральное число.

Часто значения величин, являющихся результатами из­мерений, не точны. Измерительные приборы, как правило, позволяют лишь установить границы, между которыми находится точное значение.

Пусть, например, в результате измерения ширины х и длины у прямоугольника было установлено, что 2,5 см 44 является математической моделью задачи о периметре па­раллелограмма.

Если в это неравенство вместо переменной х подставить, например, число 16, то получим верное числовое неравен­ство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Определение: Решением неравенства с одной переменной называют значение переменной, которое обращает его в верное числовое неравенство.

Так, каждое из чисел является решением неравенства 14 + 2х > 44, а число 10, например, не явля­ется его решением.

Замечание. Определение решения неравенства анало­гично определению корня уравнения. Однако не принято говорить «корень неравенства».

Решить неравенство означает найти все его решения или доказать, что решений не существует.

Все решения неравенства образуют множество решений неравенства. Если неравенство решений не имеет, то гово­рят, что множеством его решений является пустое множе­ство. Пустое множество обозначают символом

Например, в задаче «решите неравенство ответ будет таким: «все действительные числа, кроме числа 0».

Очевидно, что неравенство решений не имеет, т. е. множеством его решений является пустое множество.

Определение: Неравенства называют равносильны­ми, если они имеют одно и то же множество решений.

Приведем несколько примеров.

Неравенства равносильны. Действитель­но, каждое из них имеет единственное решение х = 0.

Неравенства равносильны, так как множеством решений каждого из них является множество действительных чисел.

Так как каждое из неравенств решений не имеет, то они также являются равносильными.

Решение линейных неравенств с одной переменной

Свойства числовых равенств помогали нам решать урав­нения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы заменяли его другим, более прос­тым уравнением, но равносильным данному. По аналогич­ной схеме решают и неравенства.

При замене уравнения на равносильное ему уравнение используют теоремы о перенесении слагаемых из одной части уравнения в другую и об умножении обеих частей уравнения на одно и то же отличное от нуля число.

Аналогичные правила применяют и при решении не­равенств.

  • Если какое-либо слагаемое перенести из одной части нера­венства в другую, изменив при этом его знак на противопо­ложный, то получим неравенство, равносильное данному.
  • Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, равносильное данному.
  • Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, изменив при этом знак не­равенства на противоположный, то получим неравенство, равносильное данному.

С помощью этих правил решим неравенство, полученное в задаче о периметре параллелограмма (см. п. 4).

Имеем: 14 + 2х > 44.

Переносим слагаемое 14 в правую часть неравенства: 2х > 44 -14.

Разделим обе части неравенства на 2:

Заметим, что полученное неравенство равносильно ис­ходному неравенству. Множество его решений состоит из всех чисел, которые больше 15. Это множество называют числовым промежутком и обозначают (15; +) (читают: «промежуток от 15 до плюс бесконечности»).

Точки координатной прямой, изображающие решения неравенства х > 15, расположены справа от точки, изобра­жающей число 15, и образуют луч, у которого «выколото» начало (рис. 5).

Ответ может быть записан одним из способов: (15 ; + ; либо х > 15.

Заметим, что для изображения на рисунке числового промежутка используют два способа: с помощью либо штриховки (рис. 5, а), либо дуги (рис. 5, б). Мы будем использовать второй способ.

Пример:

Решите неравенство

Решение:

Перенесем слагаемое х из правой части неравенства в ле­вую, а слагаемое 3 — из левой части в правую и приведем подобные члены:

Умножим обе части неравенства на -2:

Множеством решений этого неравенства является число­вой промежуток, который обозначают (читают: «промежуток от -8 до плюс бесконечности, включая -8»).

Точки координатной прямой, изобра­жающие решения неравенства х > -8, образуют луч (рис. 6).

Ответ можно записать одним из способов: либо

Пример:

Решите неравенство

Решение:

Запишем цепочку равносильных неравенств:

Множеством решений последнего неравенства является числовой промежуток, который обозначают (чи­тают: «промежуток от минус бесконеч­ности до -1»). Точки координатной прямой, изображающие решения неравенства х b, ах b, ах —————-

Неравенства

В этом разделе вы научитесь:

  • решать неравенства;
  • решать задачи из реальной жизни, при помощи неравенств;
  • тригонометрическим соотношениям;
  • применять тригонометрические соотношения при решении задач;
  • систематизировать и представлять информацию в различных формах;
  • при помощи мер центральных тенденций оценивать и давать прогнозы;
  • определять генеральную совокупность (или популяцию) и выборку для исследования;
  • различать независимые и зависимые события, а также вычислять их вероятность.

Это интересно!

Великий Азербайджанский мыслитель, философ, математик, астроном Насреддин Туси создал научные труды, которые внесли большой вклад в историю человечества. В письменных источниках его называют «Отецом тригонометрии». В своём труде «Об измерении круга» он впервые доказал теорему синусов и применил их для астрономических расчетов.

Неравенства:

Неравенства записываются при помощи знаков Неравенства могут быть записаны словами или математическими символами, а также изображены на числовой оси.

  • если точка закрашена, то координаты этой точки удовлетворяют неравенству.
  • если точка не закрашена, то координаты этой точки не удовлетворяют неравенству

Для сравнения чисел и выражений применяются различные методы. Одним из них является метод оценки разности.

  • если разность положительна, то число больше числа ;
  • если разность отрицательна, то число меньше числа ;
  • если разность равна нулю, то число равно числу ;
  • если разность не отрицательна, то число не меньше числа ;
  • если разность не положительна, то число не больше числа ;

На числовой оси большему числу соответствует точка, расположенная правее, а меньшему числу соответствует точка, расположенная левее. Значит, если , то точка расположена правее точки , если , то — левее.

Пример:

Сравним выражения . Для этого рассмотрим разность . Значит, при любых значениях переменой значение выражения не меньше (больше или равно) значения выражения .

Свойства неравенств

  1. Если , то
  2. Если , то
  3. Если и , то
  4. Если и , то

Доказательство 3-го свойства: если , то ; если , то Тогда , отсюда следует, что

Исследование

Рассмотрим неравенство

При значении переменной меньше 7, значение суммы меньше 10.

При значении переменной равной 7, значение суммы равно 10.

При значении переменной больше 7, значение суммы больше 10.

Неравенство верно для всех чисел меньше 7.

Свойства неравенств

Теорема. Если неравенство верное, то прибавив или отняв от обеих частей данного неравенства одно и то же число, получим верное неравенство.

Если , то для любого числа

Если , то для любого числа .

Пример:

Масса морского тюленя может достигать максимально 650 кг. В настоящее время тюлень весит 398 кг. Как при помощи неравенства можно записать массу, которую еще сможет набрать тюлень?

Свойства неравенств

Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство.

Для любых чисел при получим:

  1. Если , то и Пример 1.
  2. Если , то и Пример 2.

Если обе части верного неравенства разделить или умножить на одно и то же отрицательное число и поменять знак неравенства на противоположный, то получим верное неравенство.

Для любых чисел при получим:

  1. Если , то , и Пример 3.
  2. Если , то , и Пример 4.

Сложение и вычитание неравенств

Теорема. Если

Если к обеим частям неравенства прибавить , то

Если к обеим частям неравенства прибавить , то

Из получим, что

Данная теорема верна при сложении двух и более неравенств. Если почленно сложить верные неравенства одного знака, то получится верное неравенство.

Теорема. Если перемножить почленно верные неравенства одного знака, левые и правые части которых — положительные числа, то получится верное неравенство.

Если положительные числа, и , тогда .

Если в неравенстве обе части умножим на , а в неравенстве обе части умножим на , то получим и

Отсюда следует что, .

Следствие. Если положительные числа и , тогда . (я-натуральное число).

Числовые промежутки

При множество всех действительных чисел, удовлетворяющих соотношению называется интервалом

.

Если в множество точек интервала добавить точки , то полученный промежуток будет называться отрезком .

Множество всех чисел , удовлетворяющих двойному неравенству и , соответственно записывается как .

Множество всех точек, удовлетворяющих условию и расположенных справа от точки с координатой , записывается как и читается так: промежуток от до плюс бесконечности.

Если точка принадлежит множеству чисел, удовлетворяющих условию , то это записывается как и графически изображается так:

Множество всех чисел, удовлетворяющих условию , записывается как и графически изображается так:

Если точка принадлежит множеству чисел, удовлетворяющих условию , то это записывается как и графически изображается так:

Решение линейных неравенств с одной переменной

Определение. Решением линейною неравенства с одной переменной называется множество всех значений переменной превращающих данное неравенство в верное.

Решить неравенство, значит найти все его решения или докатать, что решений нет. Неравенства, имеющие одинаковые множества решений, называются равносильными. Неравенства, не имеющие решения, также называются равносильными. При решении неравенств используются следующие следствия, полученные из свойств числовых неравенств:

1) Если из одной части неравенства перенести в другую слагаемое с противоположным знаком, то получится равносильное ему неравенство.

2) Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство. Например, неравенство равносильно неравенству , а неравенство равносильно неравенству .

3) Если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится равносильное ему неравенство.

Неравенства вида (где некоторые числа) называются линейными неравенствами, зависящими от одной переменной.

Решение неравенства

  1. Если , то ;
  2. Если , то .

Решение неравенства

  1. Если , то ;
  2. Если , то .

Пример:

разделим обе части на -3

решением неравенства является промежуток

Графическое представление решения:

Решение двойных неравенств

Двойные неравенства

Пример 1. Запишем неравенство в виде двух неравенств

Надо найти такие значения , которые будут удовлетворять неравенствам .

Пример 2.

Надо найти такие значения х, которые будут удовлетворять неравенствам

Решаем каждое неравенство и находим объединение множеств.

Пример 3. Двойное неравенство можно решить используя свойства неравенств.

Простые неравенства с переменной, входящей под знаком модуля

Геометрически решением неравенства является множество всех точек, расположенных на расстоянии меньше 3-х единиц от числа 0. Это все действительные числа, которые расположены между числами 3 и 3, т.е. .

При неравенство геометрически выражает расстояние от точки 0 до точек , при котором это расстояние будет меньше . Оно состоит из множества точек , размещённых на интервале .

Поэтому неравенство равносильно двойному неравенству Аналогично, неравенство равносильно двойному неравенству

При неравенство геометрически выражает расстояние от точки 0 до точек , при котором это расстояние будет больше . Для любого , взятого из промежутков расстояние от начала отсчета до точки больше . Поэтому, множеством решений неравенства является , т.е. объединение промежутков, удовлетворяющее неравенствам .

Множество решений неравенства будет .

Неравенства

В этой лекции вы:

  • вспомните числовые неравенства, двойные неравенства;
  • познакомитесь с понятиями объединения и пересечения множеств, линейными неравенствами с одной переменной и их системами;
  • узнаете о свойствах числовых неравенств;
  • научитесь решать линейные неравенства с одной переменной и системы линейных неравенств с одной переменной.

Числовые неравенства

В предыдущих классах вы научились сравнивать всевозможные числа и записывать результат их сравнения в виде равенства или неравенства с помощью знаков . Например, . Выражение, записанное слева от знака неравенства, называют левой частью неравенства, а выражение, записанное справа, — правой частью неравенства. Так, в последнем неравенстве левой частью неравенства является число 5, а правой — число 7.

Неравенство, обе части которого — числа, называют числовым неравенством. Например,

Для любых двух чисел и имеет место одно и только одно из соотношений: или . Ранее в зависимости от вида чисел (натуральные числа, десятичные дроби, обычные дроби с одинаковыми или разными знаменателями) мы использовали то или иное правило сравнения чисел. Удобнее было бы иметь универсальное правило сравнения.

Известно, что . Рассмотрим разность левой и правой частей этого неравенства: , разность положительна. Рассматривая разность левой и правой частей неравенства , получаем: , разность отрицательна. Рассматривая в равенстве разность левой и правой частей, получим, что разность равна нулю: .

Приходим к определению сравнения чисел:

Пример №285

Сравнить и .

Решение:

Рассмотрим разность чисел и :

Разность отрицательна, значит .

Ответ.

Напомним, что на координатной прямой точка, соответствующая меньшему числу, лежит левее точки, соответствующей большему числу. На рисунке 1 точка, соответствующая числу , лежит левее точки, соответствующей числу , поэтому .

Числовые неравенства бывают верные и неверные.

Например, — верные числовые неравенства, — неверные числовые неравенства.

Кроме знаков , называемых знаками строгого неравенства, в математике также используют знаки (читают: «меньше или равно» или «не больше») и («больше или равно» или «не меньше»). Знаки и называют знаками нестрогого неравенства. Неравенства, которые содержат знак , называют строгими неравенствами, а те, которые содержат знак или нестрогими неравенствами.

Из определения соотношений «больше», «меньше» и «равно» получаем, что , если , и , если .

Рассмотрим, как с помощью определения сравнения чисел можно доказывать неравенства.

Пример №286

Доказать, что при любом значении имеет место неравенство .

Доказательство: Рассмотрим разность левой и правой частей неравенства и упростим ее:

.

Так как при любом значении , то при любом значении имеет место неравенство , что и требовалось доказать.

Условие для примера 2 можно было сформулировать проще, например: доказать неравенство .

Пример №287

Доказать неравенство .

Доказательство: Рассмотрим разность левой и правой частей неравенства и упростим ее:

.

Так как при любом значении , . Следовательно, по определению, неравенство верно при любом , что и требовалось доказать.

Пример №288

Доказать неравенство .

Доказательство: В левой части неравенства выделим квадраты двучленов:

.

При любых значениях и : .

А значит, .

Следовательно, , что и требовалось доказать.

Напомним, что число называют средним арифметическим чисел и . Для неотрицательных чисел и число называют их средним геометрическим.

Пример №289

Доказать, что среднее арифметическое двух неотрицательных чисел и не меньше их среднего геометрического (неравенство Коши):

.

Доказательство: Рассмотрим разность левой и правой частей неравенства и преобразуем ее, учитывая, что для . Получим:

для любых и . Следовательно, при любых , , что и требовалось доказать. Отметим, что знак равенства в неравенстве Коши возможен тогда и только тогда, когда . Если .

Понятия «больше» и «меньше» появились одновременно с понятием «равно».Еще с древних времен в практической деятельности человека возникла потребность сравнивать количество предметов, длины отрезков, площади участков и т. п. Так, например, несколько неравенств присутствует в выдающемся труде «Начала» древнегреческого математика Евклида (ок. 356-300 до н. э.). В частности, там он доказывает неравенство геометрическим методом для положительных чисел и .

Чтобы оценить отношение длины круга к его диаметру (позже названное числом ), другой древнегреческий физик и математик Архимед (ок. 287-212 до н. э.) использовал неравенство:.

Привычные нам символы для записи неравенств появились лишь в XVII—XVIII в. Знаки и впервые использовал английский математик Томас Харриот (1560-1621) в работе «Практика аналитического искусства», опубликованной в 1631 году, а знаки и — в 1734 году французский математик и астроном Пьер Бугер (1698-1758).

Кроме неравенства Коши отметим еще и такие известные неравенства:

1) Неравенство Бернулли.

, где — 1, — целое число.

2) Неравенство Чебышёва.

, где — положительные числа, причем .

3) Неравенство Коши-Буняковского.

, где — любые числа.

Последнее неравенство доказали французский математик О. Л. Коши (1789-1857) и наш земляк В. Я. Буняковский. Виктор Яковлевич Буняковский (1804-1889) родился в г. Бар (сейчас — Винницкая обл.). Учился по большей части за рубежом, в основном во Франции, где его ближайшим наставником был сам Коши. В 1825 году в Парижском университете Буняковский защитил диссертацию и получил степень доктора наук. Его исследования касались области прикладной математики и математической физики. В 1826 году он переезжает из Парижа в Петербург и начинает преподавать математику и механику в известных на то время учебных заведениях, одновременно занимаясь переводом работ Коши с французского.

Основные свойства числовых неравенств

Рассмотрим свойства числовых неравенств.

Свойство 1.

Доказательство: Поскольку , то . Тогда , но , поэтому . Следовательно, .

Аналогично будем рассуждать и в случае, когда .

Свойство 2.

Доказательство: По условию . Поэтому и , т. е. числа и — положительны. Рассмотрим разность . Имеем:

(так как числа и — положительны). Поэтому .

Аналогично рассуждаем, когда и .

Геометрическая иллюстрация свойства 2 представлена на рисунках 2 и 3.

Свойство 3.

Доказательство: По условию , значит, . Рассмотрим разность и преобразуем ее:

, следовательно, .

Следствие: .

Доказательство: Так как , то , т.е. . Но , поэтому . Следовательно, .

Из этого следствия имеем:

если некоторое слагаемое перенести из одной части верного неравенства в другую, изменив при этом его знак на противоположный, то получим верное неравенство.

Свойство 4.

Доказательство: Пусть , тогда . Рассмотрим разность и преобразуем ее: .

Если , то , а значит, ; если , то , а значит .

Так как , то, обозначив , получим, что аналогичное свойство имеет место и в случае деления обеих частей неравенства на отличное от нуля число .

  • если обе части верного неравенства у множить или разделить на одно и то же положительное число, то получим верное неравенство;
  • если обе части верного неравенства у множить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.

Следствие:

Доказательство: Разделим обе части неравенства на положительное число ; тогда , т. е. .

Пример №290

Дано: . Сравнить:

Решение:

1) Если к обеим частям верного неравенства прибавим число 1, то по свойству 3 получим: .

2) Если к обеим частям верного неравенства прибавим число -5, то по свойству 3 получим верное неравенство .

3) Если обе части верного неравенства умножим на положительное число 1,7, то по свойству 4 получим верное неравенство .

4) Если обе части верного неравенства умножим на отрицательное число -1, то по свойству 4 получим верное неравенство .

5) Если обе части верного неравенства умножим на отрицательное число -10, то по свойству 4 получим верное неравенство .

Решение таких упражнений можно записать короче:

6) Если обе части верного неравенства разделим на положительное число 8, то по свойству 4 получим верное неравенство .

Напомним, что в математике есть и двойные числовые неравенства: . Например, двойное неравенство означает, что одновременно имеют место неравенства и . Так как и , то для любого числа по свойству 3 имеют место неравенства и .

Таким образом, если ко всем частям верного двойного неравенства прибавить одно и то же число, то получим верное двойное неравенство.

Рассуждая аналогично, получаем:

Рассмотренные нами свойства числовых неравенств можно использовать для оценивания значении выражении.

Пример №291

Оценить периметр квадрата со стороной см, если

Решение:

Так как периметр квадрата находят по формуле , то все части неравенства нужно умножить на 4. Получим:

, тогда .

Следовательно, периметр квадрата больше чем 12,8 см, но меньше чем 15,6 см.

Ответ. .

Пример №292

Дано: . Оценить значение выражения:

Решение:

Используя форму записи, предложенную в задании 5 примера, получим:

Почленное сложение и умножение неравенств

Продолжим рассмотрение свойств неравенств.

Допустим, имеем два верных неравенства одного знака: и . Сложим их левые части, их правые части и между результатами запишем такой же знак: . Получим верное числовое неравенство, ведь, действительно, . Действие, которое мы выполнили, называют почленным сложением неравенств. Заметим, что почленно складывать можно лишь неравенства одного знака.

Свойство 5 (почленное сложение неравенств). Если и , то .

Доказательство: К обеим частям неравенства прибавим число , а к обеим частям неравенства — число , получим два верных неравенства: и , следовательно, , что и требовалось доказать.

Аналогично доказываем, что если и , то .

Свойство 5 справедливо и в случае почленного сложения более чем двух неравенств.

Пример №293

Стороны некоторого треугольника равны см, см и см. Оценить периметр треугольника (в см), если .

Решение:

Приведем сокращенную запись решения:

Таким образом, .

Ответ. .

Свойство, аналогичное почленному сложению двух и более неравенств, существует и для умножения. Почленно умножив верные неравенства и , получим верное неравенство , ведь . Если же почленно перемножить верные неравенства и , получим — неверное неравенство. Отметим, что в первом случае обе части неравенств были положительны , а во втором -некоторые были отрицательны .

Свойство 6 (почленное умножение неравенств). Если и , где — положительные числа, то .

Доказательство: Умножим обе части неравенства на положительное число , а обе части неравенства — на положительное число получим два верных неравенства: и , следовательно, (по свойству 2). Доказано.

Аналогично можно доказать, что если и , где — положительные числа, то .

Отметим, что свойство 6 справедливо и для более чем двух неравенств.

Следствие: Если — положительные числа, причем , то , где — натуральное число.

Доказательство: Перемножив почленно верных неравенств , где и , получим .

С помощью рассмотренных нами свойств можно оценивать сумму, разность, произведение и частное чисел.

Пример №294

Дано: . Оцените значение выражения:

Решение:

1)

2) Чтобы оценить разность , представим ее в виде суммы: , но сначала оценим выражение .

Умножив все части неравенства на число и изменив знаки неравенства на противоположные, получим: , т. е. . Таким образом,

3)

4) Чтобы оценить частное , представим его в виде произведения:. Оценим выражение . Если , то . Таким образом, .

Ответ.

С помощью рассмотренных свойств можно также доказывать неравенства.

Пример №295

Доказать, что , если ,

Решение:

К каждому множителю левой части неравенства применим неравенство между средним арифметическим и средним геометрическим (неравенство Коши), получим:

Используя свойство 4, обе части каждого из этих неравенств умножим на 2, получим:

.

Перемножим эти неравенства почленно:

Таким образом,, что и требовалось доказать.

Неравенства с переменными. решение неравенства

Рассмотрим неравенство , содержащее переменную. При одних значениях переменной неравенство обращается в верное числовое неравенство, а при других — в неверное. Действительно, если вместо подставить, например, число 8, то получим — верное неравенство, если же подставить число 4, то получим неверное неравенство . В таком случае говорят, что число 8 является решением неравенства (или число 8 удовлетворяет неравенству ), а число 4 — не является его решением (или число 4 не удовлетворяет неравенству ).

Также решениями неравенства являются, например, числа т. д.

Решением неравенства с одной переменной называют такое значение переменной, которое обращает его в верное числовое неравенство.

Решить неравенство — означает найти все его решения или доказать, что решений нет.

Пример №296

Решить неравенство: 1)

Решение:

1) при всех , причем тогда и только тогда, когда . Значит, решением неравенства является любое положительное число.

2) при любом значении , поэтому при

любом . Следовательно, значение выражения также будет положительным при любом . А значит, при любом значении неравенство является неверным, т. е. не имеет решений.

Ответ. 1) Любое число, большее нуля; 2) нет решений.

Числовые промежутки. пересечение и объединение множеств

Множество решений неравенств удобно записывать с помощью числовых промежутков.

Пример №297

Рассмотрим двойное неравенство . Ему удовлетворяют все числа больше -4 и меньше 1, то есть числа, лежащие на координатной прямой между числами -4 и 1. Множество всех чисел, удовлетворяющих неравенству , называют числовым промежутком, или просто промежутком, от -4 до 1 и обозначают: (читают: «промежуток от -4 до 1»). Чтобы показать на координатной прямой это множество, его выделяют штриховкой, как показано на рисунке 4. При этом точки -4 и 1 изображают «пустыми» (или «выколотыми»).

Число -1 удовлетворяет неравенству , а число 2 ему не удовлетворяет. В таком случае говорят, что число -1 принадлежит промежутку , а число 2 — не принадлежит (рис. 5). Следовательно, любое число, удовлетворяющее неравенству , принадлежит промежутку , и, наоборот, любое число, принадлежащее промежутку , удовлетворяет неравенству .

Пример №298

Двойному неравенству удовлетворяют не только все числа, большие, чем -4, и меньшие, чем 1, но и сами числа -4 и 1. Множество этих чисел обозначают (читают: «промежуток от -4 до 1, включая -4 и 1»). В этом случае на координатной прямой выделяют промежуток между числами -4 и 1 вместе с этими числами (рис. 6).

Пример №299

Множество чисел, удовлетворяющих двойному неравенству , обозначают: (читают: «промежуток от -4 до 1, включая -4»). Этот промежуток изображен на рисунке 7.

Пример №300

Множество чисел, удовлетворяющих двойному неравенству , обозначают: (читают: «промежуток от -4 до 1, включая 1»). Этот промежуток изображен на рисунке 8.

Пример №301

Неравенству удовлетворяют все числа, большие, чем 2, то есть числа, лежащие на координатной прямой справа от числа 2. Множество этих чисел обозначают (читают: «промежуток от 2 до плюс бесконечности») и изображают лучом, выходящим из «пустой» точки с координатой 2 (рис. 9).

Пример №302

Неравенству удовлетворяют все числа, большие, чем 2, и само число 2. Множество этих чисел обозначают: (читают: «промежуток от 2 до плюс бесконечности, включая 2») и изображают лучом, лежащим справа от точки с координатой 2, включая эту точку (рис. 10).

Пример №303

Множество чисел, удовлетворяющих условию , записывают так: (читают: «промежуток от минус бесконечности до 4»). Это множество изображено на рисунке 11.

Пример №304

Множество чисел, удовлетворяющих условию , записывают так: (читают: «промежуток от минус бесконечности до 4, включая 4»). Изображено оно на рисунке 12.

Таким образом, если конец промежутка принадлежит промежутку (например, для нестрогого неравенства), то этот конец заключают в квадратную скобку, во всех остальных случаях конец заключают в круглую скобку.

Множество всех чисел изображает вся координатная прямая и его записывают в виде . Множество, не содержащее ни одного числа, обозначают символом и называют пустым множеством.

Над множествами можно выполнять некоторые действия (операции). Рассмотрим два из них: пересечение и объединение.

Пересечением множеств и называют множество, которое состоит из элементов, принадлежащих как множеству , так и множеству .

Пересечение множеств записывают с помощью символа . Изображать пересечение множеств удобно в виде диаграмм Эйлера-Венна (рис. 13).

Пример №305

Если даны множества , и , то ; .

Пересечением числовых промежутков называют множество, которое содержит все числа, принадлежащие как одному промежутку, так и другому.

Пример №306

(рис. 14).

Пример №307

Промежутки и не имеют общих точек (рис. 15), поэтому их пересечением является пустое множество. Записать это можно так: .

Объединением множеств и называют множество, которое состоит из всех элементов, принадлежащих хотя бы одному из множеств или .

Для записи объединения множеств используют символ . Изображать объединение множеств также удобно в виде диаграмм Эйлера-Венна (рис. 16).

Пример №308

Если даны множества , и , то .

Объединением числовых промежутков называют множество, которое состоит из всех чисел, принадлежащих хотя бы одному из этих промежутков.

Пример №309

. Отметим, что объединение промежутков не всегда является промежутком. Например, множество не является промежутком (рис. 15).

Линейные неравенства с одной переменной. Равносильные неравенства

Неравенства вида , где -переменная, — некоторые числа, называют линейными неравенствами с одной переменной. Если , то обе части неравенства можно разделить на , учитывая при этом свойство числовых неравенств, то есть если а , то знак неравенства оставляем без изменении; если же , то знак неравенства изменяем на противоположный.

Пример №310

Решить неравенство: 1) .

Решение:

1) Разделив обе части неравенства на 2, получим: . Таким образом, решением неравенства является промежуток .

2) Разделив обе части неравенства на -3 и изменив при этом знак неравенства на противоположный, получим: , то есть .

Ответ. 1) ; 2) .

Отметим, что ответ можно было записать и так:

1) ; 2) .

Неравенства, имеющие одни и те же решения, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Для неравенств с переменными имеют место свойства, подобные тем, которые справедливы и для уравнений:

  1. если в любой части неравенства раскрыть скобки или привести подобные слагаемые, то получим неравенство, равносильное данному;
  2. если в неравенстве перенести слагаемое из одной его части в другую, изменив его знак на противоположный, то получим неравенство, равносильное данному;
  3. если обе части неравенства умножить или разделить на одно и то же положительное число, то получим неравенство, равносильное данному; если же обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим неравенство, равносильное данному.

Чтобы решить уравнение, мы приводим его к равносильному ему, но более простому уравнению. Аналогично, пользуясь свойствами неравенств, можно решать и неравенства, приводя их к более простым неравенствам, им равносильным.

Пример №311

Решить неравенство

Решение:

Умножим обе части неравенства на наименьший общий знаменатель дробей — число 6, далее упростим его левую часть и перенесем слагаемые с переменной в левую часть неравенства, а без переменной — в правую.

Получили неравенство, равносильное исходному. Оно не имеет решений, так как при любом значении левая часть неравенства будет равна нулю, а неравенство является неверным.

Ответ. Решений нет.

Пример №312

Решить неравенство .

Решение:

Раскрыв скобки, получим:

.

Решая далее, имеем: ; то есть .

Последнее неравенство равносильно исходному и является верным при любом значении , так как при любом значении его левая часть будет равна нулю, а неравенство является верным. Таким образом, решением неравенства будет любое число, а значит, множеством решений является промежуток .

Ответ: .

Из примеров 2 и 3 можно сделать вывод, что

неравенства вида или не имеют решений, или их решение — любое число.

Пример №313

Для каждого значения решить неравенство , где — переменная.

Решение:

Чтобы привести неравенство к линейному, перенесем слагаемые, содержащие переменную, в левую часть неравенства, остальные — в правую часть:

Значение выражения для разных значений может быть положительным, отрицательным или нулевым, поэтому рассмотрим отдельно каждый из этих случаев:

1) Если , т. е. , то, разделив левую и правую части неравенства на положительное число , получим:

2) Если , т. е. , получим не имеющее решений неравенство.

3) Если , т. е. , то, разделив левую и правую части неравенства на отрицательное число и изменив знак неравенства на противоположный, получим:

Ответ. Если , то ; если , то решений нет; если ,то .

Системы линейных неравенств с одной переменной, их решение

Рассмотрим задачу. Велосипедист за 2 ч преодолевает расстояние, большее чем 24 км, а за 3 ч — расстояние, меньшее чем 39 км. Найти скорость велосипедиста.

Решим ее. Пусть скорость велосипедиста равна км/ч, тогда за 2 ч он преодолевает км, а за 3 ч — км. По условию задачи и .

Нам нужно найти такие значения , при которых верным будет как неравенство , так и неравенство , то есть нужно найти общие решения обоих неравенств. В таком случае объединяют неравенства в систему и говорят, что нужно решить систему неравенств:

Так как оба неравенства — линейные, то получим систему линейных неравенств с одной переменной.

Решив каждое из неравенств системы, имеем систему:

Значит, значение должно удовлетворять условию: .

Следовательно, скорость велосипедиста больше чем 12 км/ч, но меньше чем 13 км/ч.

Число 12,6 удовлетворяет каждому из неравенств системы

И действительно, каждое из числовых неравенств и является верным. В таком случае говорят, что число 12,6 — решение данной системы неравенств.

Решением системы неравенств с одной переменной называют значение переменной, при котором верным является каждое из неравенств системы.

Решить систему — означает найти все ее решения или доказать, что решений нет.

При решении системы неравенств целесообразно придерживаться следующей последовательности действий:

  1. решить каждое из неравенств системы;
  2. отметить множество решений каждого из неравенств на координатной прямой;
  3. найти пересечение этих множеств, которое и будет множеством решений системы;
  4. записать ответ.

Пример №314

Решить систему неравенств:

Решение:

Постепенно заменяя каждое из неравенств системы ему равносильным, но более простым, получим:

Отметим на координатной прямой множество чисел, удовлетворяющих неравенству , и множество чисел, удовлетворяющих неравенству (рис. 26). Множеством решений системы является пересечение этих множеств, то есть промежуток .

Ответ. .

Ответ в примере 1 можно записать и так: .

Пример №315

Найти все целые решения системы неравенств:

Решение:

Найдем сначала все решения системы:

Очевидно, решением системы является промежуток . Теперь найдем все целые числа, принадлежащие этому промежутку: -5; -4; -3. Таким образом, целыми решениями системы являются числа -5; -4; -3.

Пример №316

Решить систему неравенств:

Решение:

Отметив полученные решения неравенств системы на координатной прямой (рис. 28), видим, что общих точек у них нет, а значит, пересечением промежутков является пустое множество. Следовательно, система решений не имеет.

Ответ. Решений нет.

Пример №317

Решить неравенство .

Решение:

Перепишем данное двойное неравенство в виде системы неравенств:

Решим эту систему:

Таким образом, , то есть .

Ответ. .

Решение можно записать и так:

А ответ можно также представить в виде: .

Неравенства: равносильные преобразования неравенств и общий метод интервалов

Понятия неравенства с одной переменной и его решений

Определение:

Если два выражения с переменной соединить одним из знаков то получим неравенство с переменной. В общем виде неравенство с одной переменной (например, для случая «больше») записывают так:

Пример:

— линейное неравенство;

— квадратное неравенство;

— дробное неравенство

Определение:

Решением неравенства с переменной называется значение переменной, которое обращает заданное неравенство в верное числовое неравенство. Решить неравенство — значит найти все его решения или доказать, что их нет

Пример:

— одно из решений неравенства , так как при получаем верное неравенство: , то есть

2. Область допустимых значений (ОДЗ)

Определение:

Областью допустимых значений (или областью определения) неравенства называется общая область определения для функций и , которые стоят в левой и правой частях неравенства

Пример:

Для неравенства ОДЗ: , то есть , так как область определения функции определяется условием: , а областью определения функции является множество всех действительных чисел

3. Равносильные неравенства

Определение:

Два неравенства называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же решения

то есть каждое решение первого неравенства является решением второго и наоборот, каждое решение второго неравенства является решением первого

1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве)

2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не меняя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного неравенства)

3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства) и изменить знак неравенства на противоположный, то получим неравенство, равносильное заданному (на ОДЗ заданного неравенства)

4. Метод интервалов (решения неравенств вида )

2. Найти нули функции

3. Отметить нули на ОДЗ и найти знак функции на каждом промежутке, на которые разбивается ОДЗ.

4. Записать ответ, учитывая знак заданного неравенства

Пример:

Решите неравенство

► Пусть

1. ОДЗ: , то есть, .

2. Нули функции:

(входят в ОДЗ)

3.

Ответ:

5. Схема поиска решения неравенств

— исходное неравенство;

— неравенство, полученное в результате преобразования исходного;

— символическое изображение выполненных преобразований (с указанием направления их выполнения)

Объяснение и обоснование:

Понятия неравенства с переменной и его решений

Если два выражения с переменной соединить одним из знаков то получаем неравенство с переменной.

Аналогично уравнению, неравенство с переменной (например, со знаком ) чаще всего понимают как аналитическую запись задачи о нахождении тех значений аргументов, при которых значение одной из заданных функций больше, чем значение другой заданной функции. Поэтому в общем виде неравенство с одной переменной (например, для случаев «больше») записывают так:

Напомним, что решением неравенства называется значение переменной, которое обращает это неравенство в верное числовое неравенство.

Решить неравенство — значит найти все его решения или доказать, что их нет.

Например, решениями неравенства являются все значения , для неравенства решениями являются все действительные числа (), а неравенство не имеет решений, поскольку значение не может быть отрицательным числом, меньшим .

Область допустимых значений (ОДЗ) неравенств

Область допустимых значений (ОДЗ) неравенства определяется аналогично ОДЗ уравнения. Если задано неравенство , то общая область определения функций и называется областью допустимых значений этого неравенства (иногда используются также термины «область определения неравенства» или «множество допустимых значений неравенства»). Например, для неравенства областью допустимых значений являются все действительные числа (это можно записать, например, так: ОДЗ: ), поскольку функции и имеют области определения .

Понятно, что каждое решение заданного неравенства входит как в область определения функции , так и в область определения функции (иначе мы не сможем получить верное числовое неравенство). Таким образом, каждое решение неравенства обязательно входит в ОДЗ этого неравенства. Это позволяет в некоторых случаях применить анализ ОДЗ неравенства для его решения.

Например, в неравенстве функция определена при всех действительных значениях , а функция — только при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Таким образом, ОДЗ этого неравенства задается системой из которой получаем систему не имеющую решений. Таким образом, ОДЗ заданного неравенства не содержит ни одного числа, поэтому это неравенство не имеет решений.

В основном при решении неравенств различных видов приходится применять один из двух методов решения: равносильные преобразования неравенств или так называемый метод интервалов.

Равносильные неравенства

С понятием равносильности неравенств вы знакомы еще из курса алгебры 9 класса. Как и для случая равносильных уравнений, равносильность неравенств мы будем рассматривать на определенном множестве.

Два неравенства называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же решения, то есть каждое решение первого неравенства является решением второго, и наоборот, каждое решение второго неравенства является решением первого.

Договоримся, что в дальнейшем все равносильные преобразования неравенств будем выполнять на ОДЗ заданного неравенства. В случае когда ОДЗ заданного неравенства является множество всех действительных чисел, мы не всегда будем его записывать (как не записывали ОДЗ при решении линейных или квадратных неравенств). И в других случаях главное — не записать ОДЗ при решении неравенства, а действительно учесть ее при выполнении равносильных преобразований заданного неравенства.

Общие ориентиры выполнения равносильных преобразований неравенств аналогичны соответствующим ориентирам выполнения равносильных преобразований уравнений.

Как указывалось выше, выполняя равносильные преобразования неравенств, необходимо учитывать ОДЗ заданного неравенства — это и есть первый ориентир для выполнения равносильных преобразований неравенств.

По определению равносильности неравенств необходимо обеспечить, чтобы каждое решение первого неравенства было решением второго, и наоборот, каждое решение второго неравенства было решением первого. Для этого достаточно обеспечить сохранение верного неравенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях. Это и есть второй ориентир для решения неравенств с помощью равносильных преобразований. Действительно, каждое решение неравенства обращает его в верное числовое неравенство, и если верное неравенство сохраняется, то решение каждого из неравенств будет также и решением другого, таким образом, неравенства будут равносильны (соответствующие ориентиры схематически представлены в пункте 5 табл. 11).

Например, чтобы решить с помощью равносильных преобразований неравенство

достаточно учесть его ОДЗ: и условие положительности дроби (дробь будет положительной тогда и только тогда, когда числитель и знаменатель дроби имеют одинаковые знаки), а также учесть, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлении с сохранением верного неравенства.

► Данное неравенство равносильно

совокупности двух систем:

или (2)

Тогда получаем или

Таким образом, или .

Ответ: .

Заметим, что при записи условия положительности дроби — совокупности систем (2) — мы неявно учли ОДЗ неравенства (1). Действительно, если или , то , поэтому в явном виде ОДЗ заданного неравенства не записано при оформлении решения.

Кроме выделенных общих ориентиров, для выполнения равносильных преобразований неравенств можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности неравенств обобщим также формулировки простейших теорем о равносильности неравенств, известных из курса алгебры 9 класса.

1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве).

2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не изменяя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного).

3. Если обе части неравенства у множить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства ) и изменить знак неравенства на противоположный, то получим неравенство,равносильное заданному (на ОДЗ заданного).

Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований заданного неравенства.

Замечание. Для обозначения перехода от заданного неравенства к неравенству, равносильному ему, можно применять специальный значок , но его использование при оформлении решений не является обязательным (хотя иногда мы будем его использовать, чтобы подчеркнуть, что было выполнено именно равносильное преобразование).

Метод интервалов

Решение неравенств методом интервалов опирается на свойства функций, связанные с изменением знаков функции. Объясним эти свойства, используя графики известных нам функций, например функций и (рис. 54).

Рассматривая эти графики, замечаем, что функция может изменить свой знак только в двух случаях:

1) если график разрывается (как в случае функции (рис. 54, а) — график разрывается в точке 0 и знак функции изменяется в точке 0);

2) если график без разрыва переходит из нижней полуплоскости в верхнюю (или наоборот). Но тогда график пересекает ось (как в случае функции ) (рис. 54, б). На оси значения функции равны нулю. (Напомним, что значения аргумента, при которых функция равна нулю, называют нулями функции.) Таким образом, любая функция может поменять свой знак только в нулях или в точках, где разрывается график функции (в так называемых точках разрыва функции). Точки, в которых разрывается график функции , мы выделяем, как правило, когда находим область определения этой функции. Например, если , то ее область определения , и именно в точке 0 график этой функции разрывается (рис. 54, а). Если же на каком-нибудь промежутке области определения график функции не разрывается и функция не равна нулю, то по приведенному выше выводу она не может на этом промежутке поменять свой знак. Таким образом, если отметить нули функции на ее области определения, то область определения разобьется на промежутки, внутри которых знак функции измениться не может (и поэтому этот знак можно определить в любой точке из этого промежутка).

Подробнее это понятие будет рассмотрено в 11 классе.

В 11 классе мы уточним формулировку этого свойства (так называемых непрерывных функций). Для всех известных вам функций (линейных, квадратичных, степенных, дробно-рациональных) это свойство имеет место.

В таблице 12 приведено решение дробно-рационального неравенства методом интервалов; комментарий, объясняющий каждый этап решения; план решения неравенств вида методом интервалов.

Пример:

Решение:

1. ОДЗ: , то есть

2. Нули

тогда .

3.

4. Ответ: .

1. Рассмотрим функцию, стоящую в левой части этого неравенства, и обозначим ее через .

Решением неравенства могут быть только числа, которые входят в область определения функции , то есть числа, входящие в ОДЗ неравенства. Поэтому первым этапом решения неравенства методом интервалов будет нахождение его ОДЗ

2. Нас интересуют те промежутки области определения функции , на которых эта функция положительна. Как было отмечено выше, элементарная функция может поменять знак в своих нулях, поэтому вторым этапом решения неравенства будет нахождение нулей функции (для этого приравниваем функцию к нулю и решаем полученное уравнение)

3. Если теперь отметить нули на области определения функции , то область определения разбивается на промежутки, внутри каждого из которых функция не меняет свой знак. Поэтому знак функции на каждом промежутке можно определить в любой точке этого промежутка. Это и является третьим этапом решения

4. Из рисунка видно, что решением неравенства является объединение промежутков

1. Найти ОДЗ неравенства

2. Найти нули

3. Отметить нули на ОДЗ и найти знак функции в каждом промежутке, на которые разбивается ОДЗ

4. Записать ответ, учитывая знак неравенства

Приведем пример решения более сложного дробно-рационального неравенства методом интервалов и с помощью равносильных преобразований.

Пример:

Решите неравенство

I способ (метод интервалов)

Решение:

►Пусть

1. ОДЗ:

2. Нули

(принадлежат ОДЗ).

3. Отмечаем нули функции на ОДЗ и находим знак в каждом из промежутков, на которые разбивается ОДЗ.

4. Ответ:

Данное неравенство имеет вид , и для его решения можно применить метод интервалов. Для этого используем план, приведенный выше и в таблице 11.

При нахождении нулей следим за тем, чтобы найденные значения принадлежали ОДЗ (или выполняем проверку найденных корней уравнения ).

Записывая ответ к нестрогому неравенству, следует учесть, что все нули функции должны войти в ответ (в данном случае — числа ).

II способ (с помощью равносильных преобразований)

Выберем для решения метод равносильных преобразований неравенства. При выполнении равносильных преобразований мы должны учесть ОДЗ данного неравенства, то есть учесть ограничение .

Но если , и тогда в данной дроби знаменатель положителен. Если выполняется данное неравенство, то числитель дроби (и наоборот, если выполняется последнее неравенство, то на ОДЗ дробь ), то есть данное неравенство равносильно на ОДЗ неравенству .

Чтобы решить полученное квадратное неравенство, найдем корни квадратного трехчлена и построим эскиз графика функции . Решение квадратного неравенства: .

Поскольку все преобразования были равносильными только на ОДЗ, то мы должны выбрать те решения квадратного неравенства, которые удовлетворяют ограничению ОДЗ.

Решение:

► ОДЗ: то есть .

Тогда и данное неравенство на его ОДЗ равносильно неравенству . Поскольку при (эти значения принадлежат ОДЗ), получаем (см. рисунок).

Учитывая ОДЗ, получаем ответ.

Ответ: .

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Числовые последовательности
  • Предел числовой последовательности
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики
  • Системы линейных уравнений с двумя переменными
  • Рациональные выражения
  • Квадратные корни
  • Квадратные уравнения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Общие сведения о неравенствах

Данный материал может показаться сложным для понимания. Рекомендуется изучать его маленькими частями.

Определения и свойства

Неравенством мы будем называть два числовых или буквенных выражения, соединенных знаками >, 5 > 3

Данное неравенство говорит о том, что число 5 больше, чем число 3. Острый угол знака неравенства должен быть направлен в сторону меньшего числа. Это неравенство является верным, поскольку 5 больше, чем 3.

Если на левую чашу весов положить арбуз массой 5 кг, а на правую — арбуз массой 3 кг, то левая чаша перевесит правую, и экран весов покажет, что левая чаша тяжелее правой:

Если 5 > 3 , то 3 . То есть левую и правую часть неравенства можно поменять местами, изменив знак неравенства на противоположный. В ситуации с весами: большой арбуз можно положить на правую чашу, а маленький арбуз на левую. Тогда правая чаша перевесит левую, и экран покажет знак

Если в неравенстве 5 > 3 , не трогая левую и правую часть, поменять знак на , то получится неравенство 5 . Это неравенство не является верным, поскольку число 3 не может быть больше числа 5.

Числа, которые располагаются в левой и правой части неравенства, будем называть членами этого неравенства. Например, в неравенстве 5 > 3 членами являются числа 5 и 3.

Рассмотрим некоторые важные свойства для неравенства 5 > 3 .
В будущем эти свойства будут работать и для других неравенств.

Свойство 1.

Если к левой и правой части неравенства 5 > 3 прибавить или вычесть одно и то же число, то знак неравенства не изменится.

Например, прибавим к обеим частям неравенства число 4. Тогда получим:

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем вычесть из обеих частей неравенства 5 > 3 какое-нибудь число, скажем число 2

Видим, что левая часть по-прежнему больше правой.

Из данного свойства следует, что любой член неравенства можно перенести из одной части в другую часть, изменив знак этого члена. Знак неравенства при этом не изменится.

Например, перенесём в неравенстве 5 > 3 , член 5 из левой части в правую часть, изменив знак этого члена. После переноса члена 5 в правую часть, в левой части ничего не останется, поэтому запишем там 0

Видим, что левая часть по-прежнему больше правой.

Свойство 2.

Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства не изменится.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь положительное число, скажем на число 2. Тогда получим:

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь число. Разделим их на 2

Видим, что левая часть по-прежнему больше правой.

Свойство 3.

Если обе части неравенства умножить или разделить на одно и то же отрицательное число , то знак неравенства изменится на противоположный.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь отрицательное число, скажем на число −2 . Тогда получим:

Видим, что левая часть стала меньше правой. То есть знак неравенства изменился на противоположный.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь отрицательное число. Давайте разделим их на −1

Видим, что левая часть стала меньше правой. То есть знак неравенства изменился на противоположный.

Само по себе неравенство можно понимать, как некоторое условие. Если условие выполняется, то неравенство является верным. И наоборот, если условие не выполняется, то неравенство не верно.

Например, чтобы ответить на вопрос является ли верным неравенство 7 > 3 , нужно проверить выполняется ли условие «больше ли 7, чем 3» . Мы знаем, что число 7 больше, чем число 3. То есть условие выполнено, а значит и неравенство 7 > 3 верно.

Неравенство 8 не является верным, поскольку не выполняется условие «8 меньше, чем 6».

Другим способом определения верности неравенства является составление разности из левой и правой части данного неравенства. Если разность положительна, то левая часть больше правой части. И наоборот, если разность отрицательна, то левая часть меньше правой части. Более точно это правило выглядит следующим образом:

Число a больше числа b, если разность a − b положительна. Число a меньше числа b, если разность a − b отрицательна.

Например, мы выяснили, что неравенство 7 > 3 является верным, поскольку число 7 больше, чем число 3. Докажем это с помощью правила, приведённого выше.

Составим разность из членов 7 и 3. Тогда получим 7 − 3 = 4 . Согласно правилу, число 7 будет больше числа 3, если разность 7 − 3 окажется положительной. У нас она равна 4, то есть разность положительна. А значит число 7 больше числа 3.

Проверим с помощью разности верно ли неравенство 3 . Составим разность, получим 3 − 4 = −1 . Согласно правилу, число 3 будет меньше числа 4, если разность 3 − 4 окажется отрицательной. У нас она равна −1, то есть разность отрицательна. А значит число 3 меньше числа 4.

Проверим верно ли неравенство 5 > 8 . Составим разность, получим 5 − 8 = −3 . Согласно правилу, число 5 будет больше числа 8, если разность 5 − 8 окажется положительной. У нас разность равна −3, то есть она не является положительной. А значит число 5 не больше числа 8. Иными словами, неравенство 5 > 8 не является верным.

Строгие и нестрогие неравенства

Неравенства, содержащие знаки >, 5 > 3 , 7 .

Нестрогим, например, является неравенство 2 ≤ 5 . Данное неравенство читают следующим образом: «2 меньше или равно 5» .

Запись 2 ≤ 5 является неполной. Полная запись этого неравенства выглядит следующим образом:

Тогда становится очевидным, что неравенство 2 ≤ 5 состоит из двух условий: «два меньше пять» и «два равно пять» .

Нестрогое неравенство верно в том случае, если выполняется хотя бы одно из его условий. В нашем примере верным является условие «2 меньше 5» . Значит и само неравенство 2 ≤ 5 верно.

Пример 2. Неравенство 2 ≤ 2 является верным, поскольку выполняется одно из его условий, а именно 2 = 2.

Пример 3. Неравенство 5 ≤ 2 не является верным, поскольку не выполняется ни одно из его условий: ни 5 ни 5 = 2 .

Двойное неравенство

Число 3 больше, чем число 2 и меньше, чем число 4 . В виде неравенства это высказывание можно записать так: 2 . Такое неравенство называют двойным.

Двойное неравенство может содержать знаки нестрогих неравенств. К примеру, если число 5 больше или равно, чем число 2, и меньше или равно, чем число 7 , то можно записать, что 2 ≤ 5 ≤ 7

Чтобы правильно записать двойное неравенство, сначала записывают член находящийся в середине, затем член находящийся слева, затем член находящийся справа.

Например, запишем, что число 6 больше, чем число 4, и меньше, чем число 9.

Сначала записываем 6

Слева записываем, что это число больше, чем число 4

Справа записываем, что число 6 меньше, чем число 9

Неравенство с переменной

Неравенство, как и равенство может содержать переменную.

Например, неравенство x > 2 содержит переменную x . Обычно такое неравенство нужно решить, то есть выяснить при каких значениях x данное неравенство становится верным.

Решить неравенство означает найти такие значения переменной x, при которых данное неравенство становится верным.

Значение переменной, при котором неравенство становится верным, называется решением неравенства.

Неравенство x > 2 становится верным при x = 3, x = 4, x = 5, x = 6 и так далее до бесконечности. Видим, что это неравенство имеет не одно решение, а множество решений.

Другими словами, решением неравенства x > 2 является множество всех чисел, бóльших 2. При этих числах неравенство будет верным. Примеры:

Число 2, располагающееся в правой части неравенства x > 2 , будем называть границей данного неравенства. В зависимости от знака неравенства, граница может принадлежать множеству решений неравенства либо не принадлежать ему.

В нашем примере граница неравенства не принадлежит множеству решений, поскольку при подстановке числа 2 в неравенство x > 2 получается не верное неравенство 2 > 2 . Число 2 не может быть больше самого себя, поскольку оно равно самому себе (2 = 2) .

Неравенство x > 2 является строгим. Его можно прочитать так: « x строго больше 2″ . То есть все значения, принимаемые переменной x должны быть строго больше 2. В противном случае, неравенство верным не будет.

Если бы нам было дано нестрогое неравенство x ≥ 2 , то решениями данного неравенства были бы все числа, которые больше 2, в том числе и само число 2. В этом неравенстве граница 2 принадлежит множеству решений неравенства, поскольку при подстановке числа 2 в неравенство x ≥ 2 получается верное неравенство 2 ≥ 2 . Ранее было сказано, что нестрогое неравенство является верным, если выполняется хотя бы одно из его условий. В неравенстве 2 ≥ 2 выполняется условие 2 = 2 , поэтому и само неравенство 2 ≥ 2 верно.

Как решать неравенства

Процесс решения неравенств во многом схож с процессом решения уравнений. При решении неравенств мы будем применять свойства, которые изучили вначале данного урока, такие как: перенос слагаемых из одной части неравенства в другую часть, меняя знак; умножение (или деление) обеих частей неравенства на одно и то же число.

Эти свойства позволяют получить неравенство, которое равносильно исходному. Равносильными называют неравенства, решения которых совпадают.

Решая уравнения мы выполняли тождественные преобразования до тех пор, пока в левой части уравнения не оставалась переменная, а в правой части значение этой переменной (например: x = 2, x = 5 ). Иными словами, заменяли исходное уравнение на равносильное ему уравнение до тех пор, пока не получалось уравнение вида x = a , где a значение переменной x . В зависимости от уравнения, корней могло быть один, два, бесконечное множество, либо не быть совсем.

А при решении неравенств мы будем заменять исходное неравенство на равносильное ему неравенство до тех пор, пока в левой части не останется переменная этого неравенства, а в правой части его граница.

Пример 1. Решить неравенство 2x > 6

Итак, нужно найти такие значения x , при подстановке которых в 2x > 6 получится верное неравенство.

Вначале данного урока было сказано, что если обе части неравенства разделить на какое-нибудь положительное число, то знак неравенства не изменится. Если применить это свойство к неравенству, содержащему переменную, то получится неравенство равносильное исходному.

В нашем случае, если мы разделим обе части неравенства 2x > 6 на какое-нибудь положительное число, то получится неравенство, которое равносильно исходному неравенству 2x > 6.

Итак, разделим обе части неравенства на 2.

В левой части осталась переменная x , а правая часть стала равна 3. Получилось равносильное неравенство x > 3. На этом решение завершается, поскольку в левой части осталась переменная, а в правой части граница неравенства.

Теперь можно сделать вывод, что решениями неравенства x > 3 являются все числа, которые больше 3. Это числа 4, 5, 6, 7 и так далее до бесконечности. При этих значениях неравенство x > 3 будет верным.

Отметим, что неравенство x > 3 является строгим. « Переменная x строго больше трёх».

А поскольку неравенство x > 3 равносильно исходному неравенству 2x > 6 , то их решения будут совпадать. Иначе говоря, значения, которые подходят неравенству x > 3, будут подходить и неравенству 2x > 6. Покажем это.

Возьмём, например, число 5 и подставим его сначала в полученное нами равносильное неравенство x > 3 , а потом в исходное 2x > 6 .

Видим, что в обоих случаях получается верное неравенство.

После того, как неравенство решено, ответ нужно записать в виде так называемого числового промежутка следующим образом:

В этом выражении говорится, что значения, принимаемые переменной x , принадлежат числовому промежутку от трёх до плюс бесконечности.

Иначе говоря, все числа, начиная от трёх до плюс бесконечности являются решениями неравенства x > 3 . Знак в математике означает бесконечность.

Учитывая, что понятие числового промежутка очень важно, остановимся на нём подробнее.

Числовые промежутки

Числовым промежутком называют множество чисел на координатной прямой, которое может быть описано с помощью неравенства.

Допустим, мы хотим изобразить на координатной прямой множество чисел от 2 до 8. Для этого сначала на координатной прямой отмечаем точки с координатами 2 и 8, а затем выделяем штрихами ту область, которая располагается между координатами 2 и 8. Эти штрихи будут играть роль чисел, располагающихся между числами 2 и 8

Числа 2 и 8 назовём границами числового промежутка. Рисуя числовой промежуток, точки для его границ изображают не в виде точек как таковых, а в виде кружков, которые можно разглядеть.

Границы могут принадлежать числовому промежутку либо не принадлежать ему.

Если границы не принадлежат числовому промежутку, то они изображаются на координатной прямой в виде пустых кружков.

Если границы принадлежат числовому промежутку, то кружки необходимо закрасить.

На нашем рисунке кружки были оставлены пустыми. Это означало, что границы 2 и 8 не принадлежат числовому промежутку. Значит в наш числовой промежуток будут входить все числа от 2 до 8, кроме чисел 2 и 8.

Если мы хотим включить границы 2 и 8 в числовой промежуток, то кружки необходимо закрасить:

В данном случае в числовой промежуток будут входить все числа от 2 до 8, включая числа 2 и 8.

На письме числовой промежуток обозначается указанием его границ с помощью круглых или квадратных скобок.

Если границы не принадлежат числовому промежутку, то границы обрамляются круглыми скобками.

Если границы принадлежат числовому промежутку, то границы обрамляются квадратными скобками.

На рисунке представлено два числовых промежутка от 2 до 8 с соответствующими обозначениями:

На первом рисунке числовой промежуток обозначен с помощью круглых скобок, поскольку границы 2 и 8 не принадлежат этому числовому промежутку.

На втором рисунке числовой промежуток обозначен с помощью квадратных скобок, поскольку границы 2 и 8 принадлежат этому числовому промежутку.

С помощью числовых промежутков можно записывать ответы к неравенствам. Например, ответ к двойному неравенству 2 ≤ x ≤ 8 записывается так:

То есть сначала записывают переменную, входящую в неравенство, затем с помощью знака принадлежности ∈ указывают к какому числовому промежутку принадлежат значения этой переменной. В данном случае выражение x ∈ [ 2 ; 8 ] указывает на то, что переменная x, входящая в неравенство 2 ≤ x ≤ 8, принимает все значения в промежутке от 2 до 8 включительно. При этих значениях неравенство будет верным.

Обратим внимание на то, что ответ записан с помощью квадратных скобок, поскольку границы неравенства 2 ≤ x ≤ 8 , а именно числа 2 и 8 принадлежат множеству решений этого неравенства.

Множество решений неравенства 2 ≤ x ≤ 8 также можно изобразить с помощью координатной прямой:

Здесь границы числового промежутка 2 и 8 соответствуют границам неравенства 2 ≤ x ≤ 8 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 ≤ x ≤ 8 .

В некоторых источниках границы, которые не принадлежат числовому промежутку, называют открытыми.

Открытыми их называют по той причине, что числовой промежуток остаётся открытым из-за того, что его границы не принадлежат этому числовому промежутку. Пустой кружок на координатной прямой математики называют выколотой точкой . Выколоть точку значит исключить её из числового промежутка или из множества решений неравенства.

А в случае, когда границы принадлежат числовому промежутку, их называют закрытыми (или замкнутыми), поскольку такие границы закрывают (замыкают) собой числовой промежуток. Закрашенный кружок на координатной прямой также говорит о закрытости границ.

Существуют разновидности числовых промежутков. Рассмотрим каждый из них.

Числовой луч

Числовым лучом называют числовой промежуток, который задаётся неравенством x ≥ a , где a — граница данного неравенства, x — решение неравенства.

Пусть a = 3 . Тогда неравенство x ≥ a примет вид x ≥ 3 . Решениями данного неравенства являются все числа, которые больше 3, включая само число 3.

Изобразим числовой луч, заданный неравенством x ≥ 3, на координатной прямой. Для этого отметим на ней точку с координатой 3, а всю оставшуюся справа от неё область выделим штрихами. Выделяется именно правая часть, поскольку решениями неравенства x ≥ 3 являются числа, бóльшие 3. А бóльшие числа на координатной прямой располагаются правее

Здесь точка 3 соответствует границе неравенства x ≥ 3 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x ≥ 3 .

Точка 3, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства x ≥ 3 принадлежит множеству его решений.

На письме числовой луч, заданный неравенством x ≥ a, обозначается следующим образом:

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница числового луча принадлежит ему, а другая нет, поскольку бесконечность сама по себе границ не имеет и подразумевается, что по ту сторону нет числа, замыкающего этот числовой луч.

Учитывая то, что одна из границ числового луча закрыта, данный промежуток часто называют закрытым числовым лучом.

Запишем ответ к неравенству x ≥ 3 с помощью обозначения числового луча. У нас переменная a равна 3

В этом выражении говорится, что переменная x , входящая в неравенство x ≥ 3, принимает все значения от 3 до плюс бесконечности.

Иначе говоря, все числа от 3 до плюс бесконечности, являются решениями неравенства x ≥ 3 . Граница 3 принадлежит множеству решений, поскольку неравенство x ≥ 3 является нестрогим.

Закрытым числовым лучом также называют числовой промежуток, который задаётся неравенством x ≤ a . Решениями неравенства x ≤ a являются все числа, которые меньше a , включая само число a .

К примеру, если a = 2 , то неравенство примет вид x ≤ 2 . На координатной прямой граница 2 будет изображаться закрашенным кружком, а вся область, находящаяся слева, будет выделена штрихами. В этот раз выделяется левая часть, поскольку решениями неравенства x ≤ 2 являются числа, меньшие 2. А меньшие числа на координатной прямой располагаются левее

Здесь точка 2 соответствует границе неравенства x ≤ 2 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x ≤ 2 .

Точка 2, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства x ≤ 2 принадлежит множеству его решений.

Запишем ответ к неравенству x ≤ 2 с помощью обозначения числового луча:

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства x ≤ 2. Граница 2 принадлежит множеству решений, поскольку неравенство x ≤ 2 является нестрогим.

Открытый числовой луч

Открытым числовым лучом называют числовой промежуток, который задаётся неравенством x > a , где a — граница данного неравенства, x — решение неравенства.

Открытый числовой луч во многом похож на закрытый числовой луч. Различие в том, что граница a не принадлежит промежутку, как и граница неравенства x > a не принадлежит множеству его решений.

Пусть a = 3 . Тогда неравенство примет вид x > 3 . Решениями данного неравенства являются все числа, которые больше 3, за исключением числа 3

На координатной прямой граница открытого числового луча, заданного неравенством x > 3, будет изображаться в виде пустого кружка. Вся область, находящаяся справа, будет выделена штрихами:

Здесь точка 3 соответствует границе неравенства x > 3 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x > 3 . Точка 3, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x > 3 не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x > a , обозначается следующим образом:

Круглые скобки указывают на то, что границы открытого числового луча не принадлежат ему.

Запишем ответ к неравенству x > 3 с помощью обозначения открытого числового луча:

В этом выражении говорится, что все числа от 3 до плюс бесконечности, являются решениями неравенства x > 3 . Граница 3 не принадлежит множеству решений, поскольку неравенство x > 3 является строгим.

Открытым числовым лучом также называют числовой промежуток, который задаётся неравенством x , где a — граница данного неравенства, x — решение неравенства. Решениями неравенства x являются все числа, которые меньше a , исключая число a .

К примеру, если a = 2 , то неравенство примет вид x . На координатной прямой граница 2 будет изображаться пустым кружком, а вся область, находящаяся слева, будет выделена штрихами:

Здесь точка 2 соответствует границе неравенства x , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x . Точка 2, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x , обозначается следующим образом:

Запишем ответ к неравенству x с помощью обозначения открытого числового луча:

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства x Граница 2 не принадлежит множеству решений, поскольку неравенство x является строгим.

Отрезок

Отрезком называют числовой промежуток, который задаётся двойным неравенством a ≤ x ≤ b , где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2 , b = 8 . Тогда неравенство a ≤ x ≤ b примет вид 2 ≤ x ≤ 8 . Решениями неравенства 2 ≤ x ≤ 8 являются все числа, которые больше 2 и меньше 8. При этом границы неравенства 2 и 8 принадлежат множеству его решений, поскольку неравенство 2 ≤ x ≤ 8 является нестрогим.

Изобразим отрезок, заданный двойным неравенством 2 ≤ x ≤ 8 на координатной прямой. Для этого отметим на ней точки с координатами 2 и 8, а располагающуюся между ними область выделим штрихами:

Здесь точки 2 и 8 соответствуют границам неравенства 2 ≤ x ≤ 8 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 ≤ x ≤ 8 . Точки 2 и 8, являющиеся границами отрезка, изображены в виде закрашенных кружков, поскольку границы неравенства 2 ≤ x ≤ 8 принадлежат множеству его решений.

На письме отрезок, заданный неравенством a ≤ x ≤ b обозначается следующим образом:

Квадратные скобки с обеих сторон указывают на то, что границы отрезка принадлежат ему. Запишем ответ к неравенству 2 ≤ x ≤ 8 с помощью этого обозначения:

В этом выражении говорится, что все числа от 2 до 8 включительно, являются решениями неравенства 2 ≤ x ≤ 8 .

Интервал

Интервалом называют числовой промежуток, который задаётся двойным неравенством a , где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2, b = 8 . Тогда неравенство a примет вид 2 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая числа 2 и 8.

Изобразим интервал на координатной прямой:

Здесь точки 2 и 8 соответствуют границам неравенства 2 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 . Точки 2 и 8, являющиеся границами интервала, изображены в виде пустых кружков, поскольку границы неравенства 2 не принадлежат множеству его решений.

На письме интервал, заданный неравенством a обозначается следующим образом:

Круглые скобки с обеих сторон указывают на то, что границы интервала не принадлежат ему. Запишем ответ к неравенству 2 с помощью этого обозначения:

В этом выражении говорится, что все числа от 2 до 8, исключая числа 2 и 8, являются решениями неравенства 2 .

Полуинтервал

Полуинтервалом называют числовой промежуток, который задаётся неравенством a ≤ x , где a и b — границы данного неравенства, x — решение неравенства.

Полуинтервалом также называют числовой промежуток, который задаётся неравенством a .

Одна из границ полуинтервала принадлежит ему. Отсюда и название этого числового промежутка.

В ситуации с полуинтервалом a ≤ x ему (полуинтервалу) принадлежит левая граница.

А в ситуации с полуинтервалом a ему принадлежит правая граница.

Пусть a = 2 , b = 8 . Тогда неравенство a ≤ x примет вид 2 ≤ x . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, включая число 2, но исключая число 8.

Изобразим полуинтервал 2 ≤ x на координатной прямой:

Здесь точки 2 и 8 соответствуют границам неравенства 2 ≤ x , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 ≤ x .

Точка 2, являющаяся левой границей полуинтервала, изображена в виде закрашенного кружка, поскольку левая граница неравенства 2 ≤ x принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде пустого кружка, поскольку правая граница неравенства 2 ≤ x не принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a ≤ x обозначается следующим образом:

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница полуинтервала принадлежит ему, а другая нет. Запишем ответ к неравенству 2 ≤ x с помощью этого обозначения:

В этом выражении говорится, что все числа от 2 до 8, включая число 2, но исключая число 8, являются решениями неравенства 2 ≤ x .

Аналогично на координатной прямой можно изобразить полуинтервал, заданный неравенством a . Пусть a = 2 , b = 8 . Тогда неравенство a примет вид 2 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая число 2, но включая число 8.

Изобразим полуинтервал 2 на координатной прямой:

Здесь точки 2 и 8 соответствуют границам неравенства 2 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 .

Точка 2, являющаяся левой границей полуинтервала, изображена в виде пустого кружка, поскольку левая граница неравенства 2 не принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде закрашенного кружка, поскольку правая граница неравенства 2 принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a обозначается так: ( a ; b ] . Запишем ответ к неравенству 2 с помощью этого обозначения:

В этом выражении говорится, что все числа от 2 до 8, исключая число 2, но включая число 8, являются решениями неравенства 2 .

Изображение числовых промежутков на координатной прямой

Числовой промежуток может быть задан с помощью неравенства или с помощью обозначения (круглых или квадратных скобок). В обоих случаях нужно суметь изобразить этот числовой промежуток на координатной прямой. Рассмотрим несколько примеров.

Пример 1. Изобразить числовой промежуток, заданный неравенством x > 5

Вспоминаем, что неравенством вида x > a задаётся открытый числовой луч. В данном случае переменная a равна 5. Неравенство x > 5 строгое, поэтому граница 5 будет изображаться в виде пустого кружкá. Нас интересуют все значения x, которые больше 5, поэтому вся область справа будет выделена штрихами:

Пример 2. Изобразить числовой промежуток (5; +∞) на координатной прямой

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью неравенства, а с помощью обозначения числового промежутка.

Граница 5 обрамлена круглой скобкой, значит она не принадлежит промежутку. Соответственно, кружок остаётся пустым.

Символ +∞ указывает, что нас интересуют все числа, которые больше 5. Соответственно, вся область справа от границы 5 выделяется штрихами:

Пример 3. Изобразить числовой промежуток (−5; 1) на координатной прямой.

Круглыми скобками с обеих сторон обозначаются интервалы. Границы интервала не принадлежат ему, поэтому границы −5 и 1 будут изображаться на координатной прямой в виде пустых кружков. Вся область между ними будет выделена штрихами:

Пример 4. Изобразить числовой промежуток, заданный неравенством −5

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью обозначения промежутка, а с помощью двойного неравенства.

Неравенством вида a , задаётся интервал. В данном случае переменная a равна −5 , а переменная b равна единице. Неравенство −5 строгое, поэтому границы −5 и 1 будут изображаться в виде пустых кружка. Нас интересуют все значения x, которые больше −5 , но меньше единицы, поэтому вся область между точками −5 и 1 будет выделена штрихами:

Пример 5. Изобразить на координатной прямой числовые промежутки [−1; 2) и [2; 5]

В этот раз изобразим на координатной прямой сразу два промежутка. Промежуток [−1; 2) является полуинтервалом, промежуток [2; 5] — отрезком.

У полуинтервала [−1; 2) левая граница принадлежит ему, а правая нет.

А у отрезка [2; 5] обе границы принадлежат ему.

Чтобы хорошо увидеть промежутки [−1; 2) и [2; 5] , первый можно изобразить на верхней области, а второй на нижней. Так и поступим:

Граница 2 закрашена потому что она входит в промежуток [2; 5] .

Пример 6. Изобразить на координатной прямой числовые промежутки [-1; 2) и (2; 5]

Квадратной скобкой с одной стороны и круглой с другой обозначаются полуинтервалы. Одна из границ полуинтервала принадлежат ему, а другая нет.

В случае с полуинтервалом [-1; 2) левая граница будет принадлежать ему, а правая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

А в случае с полуинтервалом (2; 5] ему будет принадлежать только правая граница, а левая нет. Значит левая граница будет изображаться в виде пустого кружка. Правая же граница будет изображаться в виде закрашенного кружка.

Изобразим промежуток [-1; 2) на верхней области координатной прямой, а промежуток (2; 5] — на нижней:

Примеры решения неравенств

Неравенство, которое путём тождественных преобразований можно привести к виду ax > b (или к виду ax ), будем называть линейным неравенством с одной переменной.

В линейном неравенстве ax > b , x — это переменная, значения которой нужно найти, а — коэффициент этой переменной, b — граница неравенства, которая в зависимости от знака неравенства может принадлежать множеству его решений либо не принадлежать ему.

Например, неравенство 2x > 4 является неравенством вида ax > b . В нём роль переменной a играет число 2, роль переменной b (границы неравенства) играет число 4.

Неравенство 2x > 4 можно сделать ещё проще. Если мы разделим обе его части на 2, то получим неравенство x > 2

Получившееся неравенство x > 2 также является неравенством вида ax > b , то есть линейным неравенством с одной переменной. В этом неравенстве роль переменной a играет единица. Ранее мы говорили, что коэффициент 1 не записывают. Роль переменной b играет число 2.

Отталкиваясь от этих сведений, попробуем решить несколько простых неравенств. В ходе решения мы будем выполнять элементарные тождественные преобразования с целью получить неравенство вида ax > b

Пример 1. Решить неравенство x − 7

Прибавим к обеим частям неравенства число 7

В левой части останется x , а правая часть станет равна 7

Путём элементарных преобразований мы привели неравенство x − 7 к равносильному неравенству x . Решениями неравенства x являются все числа, которые меньше 7. Граница 7 не принадлежит множеству решений, поскольку неравенство строгое.

Когда неравенство приведено к виду x (или x > a ), его можно считать уже решённым. Наше неравенство x − 7 тоже приведено к такому виду, а именно к виду x . Но в большинстве школ требуют, чтобы ответ был записан с помощью числового промежутка и проиллюстрирован на координатной прямой.

Запишем ответ с помощью числового промежутка. В данном случае ответом будет открытый числовой луч (вспоминаем, что числовой луч задаётся неравенством x и обозначается как ( −∞ ; a)

На координатной прямой граница 7 будет изображаться в виде пустого кружка, а вся область, находящаяся слева от границы, будет выделена штрихами:

Для проверки возьмём любое число из промежутка ( −∞ ; 7 ) и подставим его в неравенство x вместо переменной x . Возьмём, например, число 2

Получилось верное числовое неравенство, значит и решение верное. Возьмём ещё какое-нибудь число, например, число 4

Получилось верное числовое неравенство. Значит решение верное.

А поскольку неравенство x равносильно исходному неравенству x − 7 , то решения неравенства x будут совпадать с решениями неравенства x − 7 . Подставим те же тестовые значения 2 и 4 в неравенство x − 7

Пример 2. Решить неравенство −4x

Разделим обе части неравенства на −4. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

Мы привели неравенство −4x к равносильному неравенству x > 4 . Решениями неравенства x > 4 будут все числа, которые больше 4. Граница 4 не принадлежит множеству решений, поскольку неравенство строгое.

Изобразим множество решений неравенства x > 4 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 3. Решить неравенство 3y + 1 > 1 + 6y

Перенесём 6y из правой части в левую часть, изменив знак. А 1 из левой части перенесем в правую часть, опять же изменив знак:

Приведём подобные слагаемые:

Разделим обе части на −3. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

Решениями неравенства y являются все числа, меньшие нуля. Изобразим множество решений неравенства y на координатной прямой и запишем ответ в виде числового промежутка:

Пример 4. Решить неравенство 5(x − 1) + 7 ≤ 1 − 3(x + 2)

Раскроем скобки в обеих частях неравенства:

Перенесем −3x из правой части в левую часть, изменив знак. Члены −5 и 7 из левой части перенесем в правую часть, опять же изменив знаки:

Приведем подобные слагаемые:

Разделим обе части получившегося неравенства на 8

Решениями неравенства являются все числа, которые меньше . Граница принадлежит множеству решений, поскольку неравенство является нестрогим.

Изобразим множество решений неравенства на координатной прямой и запишем ответ в виде числового промежутка:

Пример 5. Решить неравенство

Умножим обе части неравенства на 2. Это позволит избавиться от дроби в левой части:

Теперь перенесем 5 из левой части в правую часть, изменив знак:

После приведения подобных слагаемых, получим неравенство 6x > 1 . Разделим обе части этого неравенства на 6. Тогда получим:

Решениями неравенства являются все числа, которые больше . Граница не принадлежит множеству решений, поскольку неравенство является строгим.

Изобразим множество решений неравенства на координатной прямой и запишем ответ в виде числового промежутка:

Пример 6. Решить неравенство

Умножим обе части на 6

После приведения подобных слагаемых, получим неравенство 5x . Разделим обе части этого неравенства на 5

Решениями неравенства x являются все числа, которые меньше 6. Граница 6 не принадлежит множеству решений, поскольку неравенство является x строгим.

Изобразим множество решений неравенства x на координатной прямой и запишем ответ в виде числового промежутка:

Пример 7. Решить неравенство

Умножим обе части неравенства на 10

В получившемся неравенстве раскроем скобки в левой части:

Перенесем члены без x в правую часть

Приведем подобные слагаемые в обеих частях:

Разделим обе части получившегося неравенства на 10

Решениями неравенства x ≤ 3,5 являются все числа, которые меньше 3,5. Граница 3,5 принадлежит множеству решений, поскольку неравенство является x ≤ 3,5 нестрогим.

Изобразим множество решений неравенства x ≤ 3,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 8. Решить неравенство 4

Чтобы решить такое неравенство, нужно переменную x освободить от коэффициента 4. Тогда мы сможем сказать в каком промежутке находится решение данного неравенства.

Чтобы освободить переменную x от коэффициента, можно разделить член 4x на 4. Но правило в неравенствах таково, что если мы делим член неравенства на какое-нибудь число, то тоже самое надо сделать и с остальными членами, входящими в данное неравенство. В нашем случае на 4 нужно разделить все три члена неравенства 4

Решениями неравенства 1 являются все числа, которые больше 1 и меньше 5. Границы 1 и 5 не принадлежат множеству решений, поскольку неравенство 1 является строгим.

Изобразим множество решений неравенства 1 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 9. Решить неравенство −1 ≤ −2x ≤ 0

Разделим все члены неравенства на −2

Получили неравенство 0,5 ≥ x ≥ 0 . Двойное неравенство желательно записывать так, чтобы меньший член располагался слева, а больший справа. Поэтому перепишем наше неравенство следующим образом:

Решениями неравенства 0 ≤ x ≤ 0,5 являются все числа, которые больше 0 и меньше 0,5. Границы 0 и 0,5 принадлежат множеству решений, поскольку неравенство 0 ≤ x ≤ 0,5 является нестрогим.

Изобразим множество решений неравенства 0 ≤ x ≤ 0,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 10. Решить неравенство

Умножим обе неравенства на 12

Раскроем скобки в получившемся неравенстве и приведем подобные слагаемые:

Разделим обе части получившегося неравенства на 2

Решениями неравенства x ≤ −0,5 являются все числа, которые меньше −0,5. Граница −0,5 принадлежит множеству решений, поскольку неравенство x ≤ −0,5 является нестрогим.

Изобразим множество решений неравенства x ≤ −0,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 11. Решить неравенство

Умножим все части неравенства на 3

Теперь из каждой части получившегося неравенства вычтем 6

Каждую часть получившегося неравенства разделим на −1. Не забываем, что при делении всех частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

Решениями неравенства 3 ≤ a ≤ 9 являются все числа, которые больше 3 и меньше 9. Границы 3 и 9 принадлежат множеству решений, поскольку неравенство 3 ≤ a ≤ 9 является нестрогим.

Изобразим множество решений неравенства 3 ≤ a ≤ 9 на координатной прямой и запишем ответ в виде числового промежутка:

Когда решений нет

Существуют неравенства, которые не имеют решений. Таковым, например, является неравенство 6x > 2(3x + 1) . В процессе решения этого неравенства мы придём к тому, что знак неравенства > не оправдает своего местоположения. Давайте посмотрим, как это выглядит.

Раскроем скобки в правой части данного неравенство, получим 6x > 6x + 2 . Перенесем 6x из правой части в левую часть, изменив знак, получим 6x − 6x > 2 . Приводим подобные слагаемые и получаем неравенство 0 > 2 , которое не является верным.

Для наилучшего понимания, перепишем приведение подобных слагаемых в левой части следующим образом:

Получили неравенство 0x > 2 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль не может быть больше, чем число 2. Значит неравенство 0x > 2 не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0x > 2 , то не имеет решений и исходное неравенство 6x > 2(3x + 1) .

Пример 2. Решить неравенство

Умножим обе части неравенства на 3

В получившемся неравенстве перенесем член 12x из правой части в левую часть, изменив знак. Затем приведём подобные слагаемые:

Правая часть получившегося неравенства при любом x будет равна нулю. А ноль не меньше, чем −8. Значит неравенство 0x не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0x , то не имеет решений и исходное неравенство .

Ответ: решений нет.

Когда решений бесконечно много

Существуют неравенства, имеющие бесчисленное множество решений. Такие неравенства становятся верными при любом x .

Пример 1. Решить неравенство 5(3x − 9)

Раскроем скобки в правой части неравенства:

Перенесём 15x из правой части в левую часть, изменив знак:

Приведем подобные слагаемые в левой части:

Получили неравенство 0x . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль меньше, чем 45. Значит решением неравенства 0x является любое число.

А если приведённое равносильное неравенство 0x имеет бесчисленное множество решений, то и исходное неравенство 5(3x − 9) имеет те же решения.

Ответ можно записать в виде числового промежутка:

В этом выражении говорится, что решениями неравенства 5(3x − 9) являются все числа от минус бесконечности до плюс бесконечности.

Пример 2. Решить неравенство: 31(2x + 1) − 12x > 50x

Раскроем скобки в левой части неравенства:

Перенесём 50x из правой части в левую часть, изменив знак. А член 31 из левой части перенесём в правую часть, опять же изменив знак:

Приведём подобные слагаемые:

Получили неравенство 0x > −31 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль больше, чем −31 . Значит решением неравенства 0x является любое число.

А если приведённое равносильное неравенство 0x > −31 имеет бесчисленное множество решений, то и исходное неравенство 31(2x + 1) − 12x > 50x имеет те же решения.

Запишем ответ в виде числового промежутка:

Задания для самостоятельного решения

























Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


источники:

http://www.evkova.org/neravenstva

http://spacemath.xyz/obshhie-svedeniya-o-neravenstvah/