Использование свойств функций при решении тригонометрических уравнений

Использование свойств функций при решении тригонометрических уравнений

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №47. Методы решения тригонометрических уравнений.

Перечень вопросов, рассматриваемых в теме:

  • Формирование системы знаний и умений решать тригонометрические уравнения различными методами;
  • Применение метода разложения на множители при решении тригонометрических уравнений;
  • Применение метода оценки при решении тригонометрических уравнений;
  • Прием домножения левой и правой частей уравнения на тригонометрическую функцию при решении тригонометрических уравнений.

Глоссарий по теме

Теорема — основа метода разложения на множители

Уравнение равносильно на своей области определения совокупности .

Теорема — основа метода замены переменной

Уравнение равносильно на ОДЗ совокупности уравнений

.

Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. под ред. Жижченко А.Б. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни – 2-е изд. – М.: Просвещение, 2011. – 368 с.: ил. – ISBN 978-5-09-025401-4, сс.327-332

Шахмейстер А.Х. Тригонометрия. М.: Издательство МЦНМО : СПб.: «Петроглиф» : «Виктория плюс», 2013. – 752 с.: илл. ISBN 978-5-4439-0050-6, сс.219-221, 245-262

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

На этом уроке мы продолжаем заниматься решением тригонометрических уравнений. И здесь мы рассмотрим такие методы как разложение на множители, метод оценки, а также продолжим решать тригонометрические уравнения методом замены переменной. Кроме того, мы узнаем, как использовать домножение правой и левой частей уравнений для получения более простого уравнения, как использовать тригонометрические формулы для решения уравнений.

Сейчас выполните несколько заданий.

Представьте в виде произведения:

Используем формулы приведения, затем формулу преобразования суммы косинусов в произведение:

.

(На последнем шаге мы фактически использовали формулу двойного аргумента:

.

Ответ: .

Воспользуемся формулой понижения степени и формулой преобразования произведения косинусов в сумму косинусов. Появившийся при этом общий множитель вынесем за скобки:

Воспользуемся тем, что косинус – функция четная и известным значением косинуса. В результате получим:

При выполнении этого задания будем использовать прием домножения о деления левой части на одно и то же тригонометрическое выражение.

Но сначала заметим, что .

Теперь запишем левую часть: .

теперь домножим и разделим это выражение на : .

Теперь воспользуемся формулой синуса двойного аргумента и получим:

. Теперь еще раз воспользуемся формулой двойного аргумента, предварительно домножив числитель и знаменатель на 2:

Учитывая, что , получаем: .

То есть исходное равенство верно.

Объяснение новой темы

1. Рассмотрим метод разложения на множители

Теоретической основой метода разложения на множители является теорема:

Уравнение равносильно на своей области определения совокупности .

Для того чтобы применить эту теоремы, нужно исходное уравнение привести к виду , используя разные приемы.

Решить уравнение:

Перенесем правую часть уравнения в левую и преобразуем:

, .

Ответ: .

В этом случае мы использовали метод группировки для разложения на множители тригонометрического выражения.

Часто для преобразования выражения в произведение нужно использовать тригонометрические формулы. Рассмотрим такой пример:

Решить уравнение:

Преобразуем разность синусов в произведение:

Теперь вынесем за скобку общий множитель:

И решим каждое из двух уравнений: .

. Заметим, что вторая серия решений включается в первую. Поэтому мы можем оставить в ответе только первую серию.

Ответ: .

2. Замена переменной

Еще один метод решения тригонометрических уравнений — это метод разложения на множители. Мы уже знакомились с ним, когда решали уравнения, сводимые к квадратному или другому алгебраическому уравнению, когда решали однородные уравнения, а также знакомились с универсальной тригонометрической подстановкой. На этом уроке мы познакомимся еще с одной заменой, которая позволяет решать тригонометрические уравнения.

Рассмотрим уравнение вида:

или .

Для его решения введем новую переменную .

Тогда .

Выразим отсюда (или ).

Решите уравнение

Сделаем замену . Тогда .

Вспомогательное уравнение имеет вид:

.

.

Вернемся к исходной переменной:

.

Решим каждое из этих уравнений с помощью формулы введения вспомогательного угла:

, .

Так как , то оба уравнения имеют решения:

, .

Ответ: .

3. Теперь рассмотрим метод оценки

Часто этот метод применяют в том случае, когда уравнение включает в себя функции разного типа, например, тригонометрические и показательные, и обычные преобразования на приводят к результату. Но мы рассмотрим метод оценки при решении тригонометрических уравнений. Он основан на свойстве ограниченности тригонометрических выражений.

Решить уравнение: .

Мы знаем, что . С другой стороны, для того чтобы произведение двух различных чисел было равно 1, то они должны быть взаимно обратными, то есть если одно из них меньше 1,то другое больше 1. Но так как косинус больше 1 быть не может, то равенство может выполняться только в двух случаях:

или .

или .

или .

Вторая система ни при каких значениях k и n не имеет решений.

Первая система имеет решения при n=3m, k=2m, поэтому ее решения, а значит, и решение уравнения:

Ответ:

Рассмотрим еще один пример, в котором метод оценки применяется для решения уравнения, правая и левая части которого являются функциями разного типа.

Рассмотрим левую часть уравнения и преобразуем его:

.

Поэтому

Теперь рассмотрим правую часть: .

Поэтому данное уравнение решений не имеет.

Ответ: решений нет

Рассмотрим несколько задач.

Домножим уравнение на 2 и воспользуемся формулой понижения степени:

Теперь воспользуемся формулой преобразования суммы косинусов с произведение:

.

Теперь перенесем правую часть в левую и вынесем за скобку общий множитель:

Теперь используем формулу преобразования разности косинусов в произведение:

Теперь решим три простейших тригонометрических уравнения:

, .

В этом случае достаточно оставить первые две серии решений, так как числа вида при нечетных значениях m попадают в первую серию решений, а при четных — во вторую.

Таким образом, получаем ответ:

Ответ:

Используя метод вспомогательного угла, оценим выражение, стоящее в левой части уравнения.

То есть будем рассматривать левую часть уравнения как выражение вида:

, где .

Мы знаем, что , поэтому

Поэтому уравнение решений не имеет.

Ответ: решений нет.

Рассмотрим решение более сложного уравнения методом оценки.

Запишем уравнение в виде

Преобразуем левую часть:

Так как , то

и .

Так как и , то

Равенство возможно только при одновременном выполнении условий:

.

,

.

.

, .

Решая эту систему, получим, что, .

Ответ: , .

Рассмотрим еще один прием, который применяется при решении тригонометрических уравнений.

Домножение левой и правой части на тригонометрическую функцию

Рассмотрим решение уравнения:

Домножим обе части уравнения на :

.

Заметим, что домножая обе части уравнения на выражение с переменной, мы можем получить новые корни. Проверим те значения переменной, при которой :

не являются решением исходного уравнения, поэтому мы должны будем удалить эти числа из полученного решения.

Теперь с помощью формулы синуса двойного аргумента преобразуем полученное уравнение:

Теперь перенесем правую часть в левую и преобразуем по формуле преобразования разности синусов в произведение:

, .

Учитывая, что , получим: .

Ответ: .

Примеры и разборы решений заданий тренировочного модуля

Ответ:

Решите уравнение. Найдите коэффициенты a, b, c

Ответ:

Представим левую и правую части уравнения в виде произведения. Затем перенесём всё в левую часть и разложим на множители

Ответ:

Методы решения тригонометрических уравнений
методическая разработка по алгебре (11 класс) на тему

В работе рассматриваются различные способы решения тригонометрических уравнений

и основные ошибки, которые при этом допускаются. Материал можно использовать

при подготовке к ЕГЭ как наиболее подготовленными школьниками, так и учителями.

Скачать:

ВложениеРазмер
metody_resheniya_trigonometricheskih_uravneniy.doc425.5 КБ

Предварительный просмотр:

Методы решения тригонометрических уравнений, неравенств и систем.

Тригонометрическим уравнением называется равенство тригонометрических выражений, содержащих переменную только под знаком тригонометрических функций. Решить тригонометрическое уравнение – значит найти все его корни – все значения неизвестного, удовлетворяющие уравнению. Тригонометрические уравнения сводятся цепочкой равносильных преобразований, заменами и решениями алгебраических уравнений к простейшим тригонометрическим уравнениям. Уравнения sin x = х; tg 3x = х 2 +1 и т.д. не являются тригонометрическими и, как правило, решаются приближенно или графически. Может случится так, что уравнение не является тригонометрическим согласно определению, однако оно может быть сведено к тригонометрическому. Например, 2(х – 6) cos 2x = х – 6, (х – 6)(2 cos 2x – 1) = 0, откуда х = 6 или cos 2x = , х = + π n, nZ.

Выделим основные методы решения тригонометрических равнений

  1. Разложение на множители.
  2. Введение новой переменной:

а) сведение к квадратному;

б) универсальная подстановка;

в) введение вспомогательного аргумента.

3. Сведение к однородному уравнению.

4. Применение формул.

5. Использование свойств функций, входящих в уравнение:

а) обращение к условию равенства тригонометрических функций;

б) использование свойства ограниченности функции.

1.Уравнения, в которых все функции выражаются через одну тригонометрическую функцию от одного и того же аргумента.

Примеры: sin 2 x – cos x – 1 = 0,

tg 3x + 2 ctg 3x – 3 = 0.

Преобразованиями sin 2 x= 1 — cos 2 x и ctg 3x = эти уравнения приводятся к алгебраическим, решая которые получаем простейшие тригонометрические уравнения. Метод сведения к квадратному состоит в том, что, пользуясь изученными формулами, надо преобразовать уравнение к такому виду, чтобы какую-то функцию (например, sin x или cos x) или комбинацию функций обозначить через y, получив при этом квадратное уравнение относительно y.

2.Уравнения, решаемые разложением на множители.

Под разложением на множители понимается представление данного выражения в виде произведения нескольких множителей. Если в одной части уравнения стоит несколько множителей, а в другой – 0, то каждый множитель приравнивается к нулю. Таким образом, данное уравнение можно представить в виде совокупности более простых уравнений.

sin 4x — cos 2x = 0,

2 sin 2x cos 2x — cos 2x = 0,

cos 2x (2 sin 2x – 1) = 0,

cos 2x = 0 или 2 sin 2x – 1 = 0.

3.Уравнения однородные относительно sin x и cos x.

Примеры: 3 sin 2 x + 4 sin x cos x + cos 2 x =0,

2 sin 3 5x — 2 sin 2 5x cos 5x + sin 5x cos 2 5x – cos 3 x =0,

3 sin 7x — 2 cos 7x =0.

Если первый коэффициент не равен нулю, то разделив обе части уравнения на cos n x, получим уравнение n- степени, относительно tg. Решая полученное уравнение перейдем к простейшему. При делении уравнения на выражение, содержащее неизвестное, могут быть потеряны корни. Поэтому нужно проверить, не являются ли корни уравнения cos x =0 корнями данного уравнения. Если cos x =0, то из уравнений следует, что sin x = 0. Однако sin x и cos x не могут одновременно равняться нулю, так как они связаны равенством sin 2 x + cos 2 x = 1. Следовательно, при делении уравнения на cos n x, получаем уравнение, равносильное данному. В случае, если первый или последний коэффициент равен нулю, то имеет смысл вынести за скобки sin x или cos x. Решить уравнение приравняв к нулю каждый множитель.

4.Уравнения, сводящиеся к однородным.

Примеры: 3 sin 2 x — sin x cos x — 4cos 2 x =2,

sin 3 x + sin x cos 2 x – 2cos x =0.

Эти уравнения сводятся к однородным уравнениям следующим образом:

3 sin 2 x — sin x cos x — 4cos 2 x =2 (sin 2 x + cos 2 x),

sin 3 x + sin x cos 2 x – 2cos x(sin 2 x + cos 2 x) =0.

5. Уравнения, линейные относительно sin x и cos x

а sin x + в cos x = с, где а, в и с – любые действительные числа.

Если а=в=0, а с0, то уравнение теряет смысл;

Если а=в=с=0, то х – любое действительное число, то есть уравнение обращается в тождество.

Рассмотрим случай, когда а,в,с 0.

sin x + 4 cos x = 1,

3 sin 5x — 4 cos 5x = 2,

2 sin 3x + 5 cos 3x = 8.

Последнее уравнение не имеет решений, так как левая часть его не превосходит 7.

Уравнения, этого вида можно решить многими способами: с помощью универсальной подстановки, выразив sin x и cos x через tg ; сведением уравнения к однородному; введением вспомогательного аргумента и другими.

Рассмотрим последний из них.

Разделим обе части уравнения на .

Так как += 1, то найдется аргумент φ, при котором

Уравнение примет вид sin x cos φ + sin φ cos x = .

Используя формулу получим sin (x+ φ) = .

Следовательно решением уравнения будет х = (-1) n arcsin — arccos+ π n, nZ.

Решение этого уравнения существует при a 2 + b 2 c 2 .

6.Уравнения, сводящиеся к равенству одной тригонометрической функции от различных аргументов:

1) sin x = sin у, 2) cos x = cos у, 3) tg x = tg у.

При решении этих уравнений можно применить метод использования условий равенства одноименных тригонометрических функций. Равенство этих функций имеет место тогда и только тогда, когда, соответственно, x = (-1) n y + π n,

f(x) = π — g(x) + 2 π n

Примеры: cos 4x = sin 6х, сtg x = tg .

Первое уравнение с помощью формул приведения приводим к виду : sin(- 4x) = sin 6х, а второе – к виду tg (- x) = tg .

Решим уравнение tg 3x tg (5x + ) = 1.

Разделим обе части уравнения на tg 3x. Это допустимо, так как в данных условиях tg 3x не может равняться нулю:

tg (5x + ) = , tg (5x + ) = сtg 3x, tg (5x + ) = tg ( — 3x).

На основании условия равенства тангенсов двух углов имеем:

8х = + π n; х = + ; х = (6n + 1) , nZ.

При каждом значении х из этой совокупности каждая из частей уравнения tg (5x + ) = tg ( — 3x) существует.

Уравнения sin x = sin у и cos x = cos у можно решать и с применением формул, заменив разность функций произведением.

7. Выделение полного квадрата в тригонометрических уравнениях.

sin 4 x + cos 4 x = sin 2х,

cos 6 x + sin 6 х = cos 2x,

cos 6 x + sin 6 х + sin 4 x + cos 4 x = 1 — sin 2х.

Данный метод можно применить для уравнений, содержащих следующие выражения:

sin 4 x + cos 4 x, cos 6 x sin 6 х, sin 8 х cos 8 x.

Преобразуем первое выражение:

sin 4 x + cos 4 x = sin 4 x + 2 sin 2 x cos 2 x +cos 4 x — 2 sin 2 x cos 2 x = (sin 2 x + cos 2 x) 2 — 2= 1 — sin 2 2х .

Преобразуем второе выражение:

cos 6 x + sin 6 х = (cos 2 x + sin 2 х) ( sin 4 x — sin 2 x cos 2 x +cos 4 x) = 1 — sin 2 2х — sin 2 2х = 1 — sin 2 2х.

cos 6 x — sin 6 х = (cos 2 x — sin 2 х) ( sin 4 x + sin 2 x cos 2 x +cos 4 x) = cos 2x (1 — sin 2 2х + sin 2 2х) = cos 2x (1 — sin 2 2х).

Можно упростить эти выражения и с помощью формул понижения степени.

8. Уравнения вида f(sin х + cos x, sinх cosx) = 0, f(sin х — cos x, sinх cosx) = 0.

Решить такие уравнения можно заменой sin х + cos x = t или sin х — cos x = t.

sin х + cos x = 1 + sin 2х,

6 sinх cosx + 2 sin х = 2 + 2 cos x,

3 sin 3х = 1 + 3 cos 3x — sin 6х.

После преобразования и соответствующей замены эти уравнения сводятся к квадратным. В первом уравнении, сделав замену sin х + cos x = t, получим

sin 2 x + 2 sin x cos x +cos 2 x = t 2 , 1 + sin 2х = t 2 , sin 2х = 1 — t 2 . Уравнение примет вид t = 1 + 1 — t 2 .

9. Универсальная тригонометрическая подстановка tg = t.

Эта подстановка позволяет рационально выразить все тригонометрические функции через одну переменную.

sin х = ; cos x = ; tg x = .

Значит, если tg = t, то sin х = , cos x = , tg x = . Универсальная подстановка может привести к потере корней, так как tg не существует при = + π n, значит x π + 2 π n.

ctg + sin х + tg x = 1,

sin 2х + cos x = 2 — tg x.

Решим уравнение ctg = 2 — sin х.

Пусть tg = t, тогда sin х = , а так как tg ctg = 1, то ctg = .

Получим = 2 — , 2 t 3 – 3t 2 + 2t – 1= 0, (t — 1)(2t 2 – t + 1) = 0.

Уравнение 2t 2 – t + 1 = 0 не имеет решений, значит t – 1 = 0, t = 1.

Следовательно, tg = 1, x = + 2 π n, nZ. Убедимся, что x = π + 2 π n не является решением исходного уравнения.

10 . Метод использования свойства ограниченности функции.

Суть этого метода заключается в следующем: если функции f(х) и g(х) таковы, что для всех х выполняются неравенства f(х)а и g(х) в, и дано уравнение

f(х) + g(х) = а + в, то оно равносильно системе

3 sin 5 x + 2 cos 5 x = 5 ⇔

2 sin 2 2x + 1 = cos 5x ⇔

sin 9х + cos 3x = — 2 ⇔

Решим последнее уравнение sin — cos 6x = 2.

Так как и , то имеем систему: ; ;

Покажем общее решение на тригонометрической окружности. Решение первого уравнения системы обозначим , а второго – точкой и найдем их общее решение.

Нужна ли проверка решения тригонометрического уравнения? На этот вопрос утвердительно ответить нельзя. Если тригонометрическое уравнение представляет собой целый многочлен относительно синуса и косинуса и если грамотно решать уравнение, то проверка может понадобится только для самоконтроля – для уверенности в правильности решения. Проверка, как правило, не нужна. Если следить в процессе решения уравнения за равносильностью перехода, то проверку решения можно не делать. Если же решать уравнение без учета равносильности перехода, то проверка обязательно нужна, особенно когда уравнение содержит тангенс, котангенс, дробные члены или тригонометрические функции от неизвестного, входящие под знак радикала. Не сделав в этом случае проверку, приходят к грубым ошибкам, к посторонним решениям. При решении уравнений, содержащих дробные члены, нужно следить за сокращением дробей, ссылаясь на основное свойство дроби. В этом случае мы избегаем посторонних корней и избавляем себя от проверки найденных решений.

Проблемы, возникающие при решении тригонометрических уравнений.

  1. Делим на g(х).
  2. Применяем опасные формулы.

1 сosx = sinx* sin,

Заменим левую часть уравнения по формуле 1 — сosx = 2sin 2 ,

а правую часть уравнения по формуле sinx = 2sin *cos , получим

2sin 2 = 2sin * сos *sin , разделим на 2 sin 2 обе части уравнения, получим 1 = сos , решая это уравнение, найдем корни = 2 π n, x = 4 π n, n Z.

Потеряли корни sin = 0, х = 2 π k, k Z.

Правильное решение: 2sin 2 (1 – сos ) = 0.

sin 2 = 0 или 1 – сos = 0

x = 2 π k, k ∈ Z. x = 4 π n, n ∈ Z.

Ответ: x = 2 π k, k ∈ Z, x = 4 π n, n ∈ Z.

2. Посторонние корни.

  1. Освобождаемся от знаменателя.
  2. Возводим в четную степень.

( sin4x – sin2x – сos3x + 2sinx — 1):(2sin2x — ) = 0.


источники:

http://resh.edu.ru/subject/lesson/6320/conspect/

http://nsportal.ru/shkola/algebra/library/2012/07/24/metody-resheniya-trigonometricheskikh-uravneniy