Исследование уравнений и неравенств задачи с параметром

Неравенства с параметром

Напомню, что два неравенства называются равносильными, если их решения совпадают. При решении неравенств нужно понимать, какие преобразования будут равносильными, и какие нет:

  1. Перенос какого-либо члена неравенства из одной части в другую, при этом знак этого члена меняется на противоположный.
  2. Умножение или деление всего неравенства (левой и правой частей) на одно и то же положительное число.
  3. Умножение или деление всего неравенства на отрицательное число, при условии, что вы меняете знак неравенства.

Разберем несколько примеров простейших неравенств с параметром. Рассуждения здесь примерно такие же, что и при анализе уравнений. Как аналитически исследовать квадратные уравнения, можно познакомиться здесь.

Решить неравенство \((a-2)x>a^2-4\) для любого значения параметра \(a\).

Первый случай: Если \(a=2\), получим неравенство \(0*x>0\), которое не имеет решений.

Внимание! Важно помнить, что если вы делите неравенство на отрицательное число, то знак неравенства меняется на противоположный. Поэтому, нужно рассмотреть еще два случая.

Второй случай: Если \(a > 2 ⇔ x > \frac ⇔ x > a+2;\)

Третий случай: Если \(a 2\) $$ x > a+2;$$ при \(a Пример 2

Решить неравенство \(ax^2-4x-4>0\) при всех значениях параметра \(a\).

Первый случай: Если \(a=0\) , неравенство примет вид \(-4x-4>0 ⇔ x

Получаем, что дискриминант больше нуля при \(a > -1; D 0\) ветки параболы направлены вверх, а при \(a 0,D > 0\)

Творческий проект » Задачи с параметрами».

Мы не случайно захотели рассмотреть данную тему. В последние годы на ГИА предлагались так называемые задачи с параметрами — уравнения, неравенства или системы уравнений, содержащие параметры . При решении задач с параметрами приходится все время производить несложные, но последовательные рассуждения, составлять для себя логическую схему решаемой задачи . Основная трудность их решения состоит в том, чтоб внимательно следить за возникающим ветвлением и аккуратно учитывать все возможности. Такие задачи — незаменимое средство для тренировки логического мышления, их решение позволяет намного лучше понять обычные, без параметров , задачи .

С учётом этого был разработан проект «Задачи с параметрами». Изучили теоретический материал по теме, обработали и систематизировали. В связи с этим вытекает следующая цель и задачи: .

Цель работы: Сформировать умения и навыки решения задач с параметрами для подготовки к ГИА.

1. Изучить алгоритм решения некоторых задач с параметрами. 2. Научиться выбирать способ решения задач с параметрами. 3.Развивать свои навыки исследовательской и познавательной деятельности.

Данный вопрос изучен всесторонне, но каждый заново открывает для себя искусство решения задач с параметрами .
Исследование поможет учителям и учащимся 7- 9х классов в подготовке к ГИА.
Главной особенностью работы является ориентированность её на возможность самостоятельного овладения учащимися содержанием.

Скачать:

ВложениеРазмер
tvorcheskiy_proekt._zadachi_s_parametrami.doc312.5 КБ
prezentatsiya_zadachi_s_parametrami.ppt739.5 КБ

Предварительный просмотр:

«Задачи с параметрами»

Автор работы: Куликова Олеся

Место выполнения работы:

МОУ СОШ №12, 10 класс

Руководитель: Полянская Нина Николаевна

учитель математики МОУ СОШ № 12

г.Новоалександровск, 2014 г

II. Основная часть………………………………………………………………………………4
1. Знакомство с параметром …………………………………………………………………4
2. Что значит решить задачу с параметрами . 5 3. Основные типы задач с параметрами……………………………………………………….5 4. Алгоритмы решения задач с параметрами………………………………………………….6

  1. Решение линейных уравнений………………………………………………………6
  2. Решений линейных неравенств………………………………………………. ……6
  3. Решение систем линейных уравнений с параметрами…… ………………………7
  4. Решение квадратных уравнений……………………………………………………..7
  5. Решение квадратных неравенств…………………………………………………….8

5. Решение заданий с параметрами по текстам ГИА………………………………………….8

Приложение 1. Алгоритм решения уравнения с параметром первой степени.

Приложение 2. Алгоритм решения неравенства к(х) > b(a).

Приложение 3. Алгоритм решения квадратного уравнения с параметром А(а)х + В(а)х + С(а) =0 .

Приложение 4. Алгоритм решения квадратных неравенств А(а)х 2 + В(а)х + С(а)  0.

В последние годы на ГИА предлагались так называемые задачи с параметрами — уравнения, неравенства или системы уравнений, содержащие параметры . При решении задач с параметрами приходится все время производить несложные, но последовательные рассуждения, составлять для себя логическую схему решаемой задачи . Основная трудность их решения состоит в том, чтоб внимательно следить за возникающим ветвлением и аккуратно учитывать все возможности. Поэтому такие задачи — незаменимое средство для тренировки логического мышления, их решение позволяет намного лучше понять обычные, без параметров , задачи .

Данный вопрос изучен всесторонне, но каждый заново открывает для себя искусство решения задач с параметрами .
Исследование поможет учителям и учащимся 7- 9х классов в подготовке к ГИА.
Главной особенностью работы является ориентированность её на возможность самостоятельного овладения учащимися содержанием.

В работе задачи сформированы по основным темам алгебры 7-9 классов:

— решение линейных уравнений; — решение линейных неравенств; — решение квадратных уравнений; — решение квадратных неравенств; — решение системы уравнений, неравенств.

В каждой теме в начале дан алгоритм решения и представлено решение некоторых задач. Работа поможет учащимся привить интерес к решению задач с параметрами в процессе самоподготовки.
В связи с этим вытекает следующая цель и задачи: .

Цель работы : Сформировать умения и навыки решения задач с параметрами для подготовки к ГИА.

1. Изучить алгоритм решения некоторых задач с параметрами. 2. Научиться выбирать способ решения задач с параметрами. 3.Развивать свои навыки исследовательской и познавательной деятельности.

  1. Знакомство с параметром

Если в уравнении некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение параметрическим.

Поскольку в школьных учебниках нет определения параметра, мы предлагаем взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

В качестве примера рассмотрим уравнение: в(в – 1)х=в +в+2

в этом уравнении х обозначено неизвестное число, а буква в выполняет роль известного фиксированного числа. Это уравнение является линейным уравнением с параметром в .

Придавая в различные значения, мы будем получать различные уравнения с числовыми коэффициентами. При различных в получаем различные уравнения из данного семейства уравнений, определяемых параметром в .

в =2 2х=4 имеет единственный корень
в = – 0,5 0,75х = – 2,25 также имеет единственный корень
в = 1 0х = 0 множество корней

в = 0 0х = – 2 корней нет

Итак, решая уравнение в(в – 1)х=в +в+2 , мы должны рассмотреть случаи:

3) когда В результате получаем следующие возможные решения:

При уравнение имеет единственный корень

При уравнение корней не имеет

При в=1 уравнение имеет бесконечное множество корней

2. Что значит решить задачу с параметрами ?

Решить уравнение с параметрами означает

1. Определить, при каких значениях параметров существуют решения. 2. Для каждой допустимой системы значений параметров найти соответствующее множество решений.

3. Основные типы задач с параметрами.

Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров). При решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени.

Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения. Например, найти значения параметра, при которых: 1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

4. Алгоритмы решения задач с параметрами.

4.1. Решение линейных уравнений с параметрами

Определение. Уравнение вида аx=b , где х – переменная , а и b — некоторые числа, называется линейным уравнением с одной переменной .

Алгоритм решения уравнения с параметром первой степени. (Приложение 1)

Задание №1. Решите уравнение ax =1.

Решение: если а = 0 , то нет решения ; если а  0 , то х = Ответ: если а  0 , то х = ; если а = 0 , то нет решения.

Задание №2. Для каждого значения параметра а найдите количество корней уравнения ах=8. Рассмотрим уравнение: а =

у = а — семейство горизонтальных прямых;

у= — графиком является гипербола.

Ответ: Если а = о, то уравнение решений не имеет. Если а ≠ о, то одно решение.

Задание №3 . При каких значениях а, уравнение не имеет решений?

Решение : х  -2 , дробь равна нулю, когда х =а , значит уравнение не имеет решение если а = -2.

Ответ: при а = -2 нет решений

4.2.Решение линейных неравенств с параметром

Алгоритм решения неравенства к(х) > b(a) (Приложение 2)

Задание №4 .Решите неравенство: ( а -4) х + а -5>0.

Решение: ( а -4) х >5- a . если а >4,то х > если а х

если то х – любое из R . если , то нет решений .

Задание №5 . Для каждого значения параметра а найдете решение неравенства ax +1 >0.

Решение: если а =0,то 0 х +1>0, 0 x >-1 при любом х .

если а >0, то х >- если a х

Ответ: при а =0 , х любое ; при а >0, х >- ; при a х

4.3.Решение систем линейных уравнений с параметрами

Системой двух уравнений первой степени с двумя неизвестными х и у называется система вида

Решение данной системы — это пары чисел ( х; у ), являющиеся решениями одновременно и первого, и второго уравнения .

Если , то система имеет единственное решение. Если , то система не имеет решений. Если , то система имеет бесконечно много решений.

Задание №6 . При каких значениях параметра а система а) имеет бесконечное множество решений; б) имеет единственное решение?

Решение: а) , а =4; б) , а  4 .

Ответ: а) если а =4, то система имеет множество решений; б) если а  4 , то одно решение.

4.4.Решение квадратных уравнений с параметрами

Уравнение вида ах 2 + bx + c =0, где х – переменная, а  0 называется квадратным. Корни квадратных уравнений х 1 ; х 2 причем х 1  х 2 . Дискриминант квадратного уравнения D = b 2 –4 ac Теорема Виета: х 1 + х 2 = — , х 1 х 2 = .

Алгоритм решения квадратного уравнения с параметром А(а) х +В (а) х +С(а) =0 (Приложение 3).

Задание №7 . .Найти все значения параметра а, при которых уравнение

x 2 –2( а -2) х + а 2 –2 a -3=0 имеет два различных положительных корня.

Решение: D > 0, 4( а -2) 2 –4( а 2 -2 а -3)>0, а

По теореме Виета условием положительности корней будет a >3

4.5.Решение квадратных неравенств параметрами

Алгоритм решения квадратных неравенств А(а)х 2 + В(а)х + С(а)  0 (Приложение 4)

Задание №8 . . При каких значениях параметра а неравенство ( а +6) х 2 -( а +3) x +1

Решение: если нет решений

если нет решений

5. Решение заданий с параметрами по текстам ГИА.

Задание № 9 . Найдите значения р , при которых парабола у=-2х 2 +рх-50 касается оси х . Для каждого значения р определите координаты точки касания.

Решение: Парабола у=-2х 2 +рх-50 касается оси х значит квадратный трехчлен -2х 2 +рх-50 имеет единственный корень. Следовательно дискриминант этого квадратного трехчлена равен 0: D=p 2 -400, p 2 -400=0, p= ±20.

При p= -20, у=-2х 2 -20х-50, у=-2(х+5) 2 , х=-5 – абсцисса точки касания параболы с осью х , (-5;0) – координаты точки касания.

При p= 20, у=-2х 2 +20х-50, у=-2(х-5) 2 , х=5 – абсцисса точки касания параболы с осью х , (5;0) – координаты точки касания.

Ответ: при p= -20, координаты точки касания – (-5;0); при p= 20 — (5;0).

Задание № 10 . Найдите все отрицательные значения параметра а , при которых неравенство ах 2 + (а-6) х + а ≥ 0 не имеет решений.

Решение: Неравенство ах 2 + (а-6) х + а ≥ 0 не имеет решений при отрицательных а, если дискриминант уравнения ах 2 + (а-6) х + а ≥ 0 меньше нуля, т.е. D = (а-6) 2 -4а∙а Получаем:

Решая методом интервалов получим а

Задание № 11. Найдите все значения k, при которых прямая y=kx пересекает ровно в двух различных точках график функции, заданной условиями:

Решение: Построим график данной функции
у=

Прямая у= kx пересекает график функции в двух различных точках, если:

  1. Угловой коэффициент прямой больше углового коэффициента прямой у=0 и меньше либо равен угловому коэффициенту прямой, проходящей через точку с координатами (-2;-1);
  2. Угловой коэффициент прямой больше либо равен угловому коэффициенту прямой, параллельной прямой у=х-2 и меньше углового коэффициента прямой, параллельной прямой у=3х+5.
  1. Найдем угловой коэффициент прямой, проходящей через точку с координатами (-2;-1): -1= -2k; k = 0,5.

Угловой коэффициент прямой у=0 равен 0. Получаем: 0

  1. Угловой коэффициент прямой, параллельной прямой у = х-2, равен 1, а прямой, параллельной прямой у=3х+5, равен 3. Получаем: 1 ≤ k

Ответ: ( 0; 0,5 ] U [ 1; 3).

Итак, в ходе данного исследования я узнала, что такое параметры, параметрические уравнения и неравенства, что значит решить задачу с параметрами, мною изучен алгоритм решения наиболее распространенных задач с параметрами. Познакомилась с четырьмя основными типами задач с параметрами. Определены сложности, возникающие при решении этих задач. Причем самым трудным в их решении является выбор способа решения и отслеживание возникающих ветвлений.

Проделанная работа по созданию проекта не только обогатила меня новыми знаниями и умениями, требовала самостоятельности, способствовала развитию логического мышления, но и помогла при подготовке к ГИА.

1. Горбачев В.И. Общие методы решения уравнений и неравенств с параметрами. М., Математика в школе №6/99 с.60-68

2. Звавич Л.И. и др. Алгебра и начала анализа. 3600 задач для школьников и поступающих в вузы.- М.: Дрофа. 1999 г. – 382 с.

3. Кожухов С.К. Об одном классе параметрических задач. – М., Математика в школе, №3/96 с.45-49

4. Кожухов С.К Различные способы решений задач с параметрами. – М., Математика в школе, №6/98 с.9-12

5. Крамар В.С. Примеры с параметрами и их решения. Пособие для поступающих в вузы. – М.:АРКТИ 200 – 48 с.

6. Мещерякова Г.П. Задачи с параметром, сводящиеся к квадратным уравнениям. М., Математика в школе, №5/2001 с.60-62

7. Ястребинецкий Г.А. Уравнения и неравенства, содержащие параметры. М.: Просвещение, 1972г.

Рецензируемая работа посвящена актуальной проблеме – решению задач с параметрами для подготовки к государственной итоговой аттестации. Задачи с параметрами традиционно представляют для учащихся сложность в логическом, техническом и психологическом плане. Однако именно решение таких задач открывает перед учащимися большое число эвристических приемов общего характера, применяемых в исследованиях на любом математическом материале. Автор работы понимает, что д анный вопрос в математике изучен всесторонне, но ученица заново открывает для себя искусство решения задач с параметрами.

Основная часть рецензируемой работы представляет собой изучение теоретических сведений о задачах с параметрами.

В работе задачи сформированы по основным темам алгебры 7-9 классов:

— решение линейных уравнений;

— решение линейных неравенств;

— решение квадратных уравнений;

— решение квадратных неравенств;

— решение системы уравнений, неравенств.

В каждой теме в начале дан алгоритм решения и представлено решение некоторых задач. Работа написана живо и хорошим математическим языком. Автором и зучен алгоритм решения некоторых задач с параметрами. Она научилась выбирать способ решения задач с параметрами. Автор работы проявила личную заинтересованность и самостоятельность в проделанной работе, научилась отдельным приёмам исследовательской работы. В конце работы приведён довольно большой список использованной литературы.

Работа представляет практический интерес, поскольку может быть использована как пособие для элективных курсов и факультативных занятий. Главной методической особенностью работы является ориентированность её на возможность самостоятельного овладения учащимися содержанием.

Рецензировала учитель математики Полянская Н.Н

Учебное пособие «Уравнения и неравенства с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…. 16-18

Задания для самостоятельной работы…………………………. 21-28

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

Выделить особое значение — это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

Если а ¹ 0, то при любой паре параметров а и b оно имеет единственное решение х=.

Если а = 0, то уравнение принимает вид : 0х= b . В этом случае значение

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0. Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax b ( а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а . Аналогично для неравенства

ах b множество решений – промежуток (-;), если a > 0, и (; +), если а

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение .

Если а = 0, то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = — решение уравнения.

Ответ: при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3), рассмотрим два случая:

Если а= -3, то любое действительное число х является корнем уравнения (1). Если же а ¹ -3, уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение: Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а — 2) х = а 2 – 4а +4

2(а — 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =. По условию х > 1, то есть >1, а > 4.

Ответ: При а <2>U (4;∞).

Пример 4. Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

а =,

y = a – семейство горизонтальных прямых;

y = графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0, то уравнение решений не имеет. Если а ≠ 0, то уравнение имеет одно решение.

Пример 5. С помощью графиков выяснить, сколько корней имеет уравнение:

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1— один корень

при | а|≤1 – уравнение корней не имеет.

Решение : ах + 4 > 2х + а 2 (а – 2) х > а 2 – 4. Рассмотрим три случая.

а=2 . Неравенство 0 х > 0 решений не имеет.

а > 2. (а – 2) х > ( а – 2)(а + 2) х > а + 2

а (а – 2) х > ( а – 2)(а + 2) х а + 2

Ответ. х > а + 2 при а > 2; х при а при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² — 4 ac , (²- ас)

2) формул корней квадратного уравнения: х 1 =, х 2 =,

1,2 = )

Квадратными называются неравенства вида

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 2 ), то при а > 0 он положителен на множестве (-; х 2 )( х 2; +) и отрицателен на интервале

1 ; х 2 ). Если а 1 ; х 2 ) и отрицателен при всех х (-; х 1 )( х 2; +).

Пример 1. Решить уравнение ах² — 2 (а – 1)х – 4 = 0.

Это квадратное уравнение

Решение: Особое значение а = 0.

При а = 0 получим линейное уравнение 2х – 4 = 0. Оно имеет единственный корень х = 2.

При а ≠ 0. Найдем дискриминант.

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ — 1 , то D >0 . По формуле корней получим: х=;

х 1 =2, х 2 =.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ — 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8— графиком является парабола;

y — семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а -9, уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х ?

Решение. Квадратный трехчлен положителен при всех значениях х, если

, откуда следует, что a > 6 .

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение = 0

Это дробно- рациональное уравнение

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

При а = -2 корней нет.

Пример 2 . Решить уравнение= (1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² — 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² — (а² — 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а — 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1+1=0, х 1+2=0, х2+1=0, х2+2=0.

Если х 1+2=0, то есть (а+1)+2=0, то а = — 3. Таким образом, при а = — 3, х1 посторонний корень уравнения. (1).

Если х2+1=0, то есть (а – 3) + 1= 0, то а = 2. Таким образом, при а = 2 х2 посторонний корень уравнения (1).

Если х2+2=0, то есть (а – 3) + 2 = 0, то а=1. Таким образом, при а = 1,

х2 — посторонний корень уравнения (1).

В соответствии с этим при а = — 3 получаем х = — 3 – 3 = -6;

при а = — 2 х = -2 – 3= — 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2, то х= -5; 3) если а= 0, то корней нет; 4) если а= 1, то х= 2; 5) если а=2, то х=3; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х1 = а + 1, х2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида = g ( x ) равносильно системе

Неравенство f ( x ) ≥ 0 следует из уравнения f ( x ) = g 2 ( x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

≤ g(x) ≥g(x)

Пример 1. Решите уравнение = х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе .

При а = 2 первое уравнение системы имеет вид 0 х = 5, то есть не имеет решений.

При а≠ 2 х=. Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1: ≥ — 1, ≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х= , при уравнение решений не имеет.

Пример 2. Решить уравнение = а (приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Пример 3 . Решим неравенство (а+1)

Решение. О.Д.З. х ≤ 2. Если а+1 ≤0, то неравенство выполняется при всех допустимых значениях х. Если же а+1>0, то

(а+1)

откуда х (2- 2

Ответ. х (- ;2 при а ( —;-1, х (2- 2

при а ( -1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a x= (-1) n arcsin a+πn, n Z, ≤1, (1)

Cos x = a x = ±arccos a + 2 πn, , n Z, ≤1. (2)

Если >1, то уравнения (1) и (2) решений не имеют .

tg x = a x= arctg a + πn, n Z, aR

ctg x = a x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a arcsin a + 2 πn Z,

при a xR ; при a ≥ 1, решений нет.

при а≤-1, решений нет; при а >1, xR

3. cos x > a arccos a + 2 πn x arccos a + 2 πn , n Z ,

при а xR ; при a ≥ 1 , решений нет.

при а≤-1 , решений нет ; при a > 1, x R

5. tg x > a, arctg a + πnZ

Пример1. Найти а, при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1 4≤ а ≤ 6, а уравнение cosx = — а-1 при условии -1≤ -1- а ≤ 1 -2 ≤ а ≤0.

Ответ. а -2; 0 4; 6

Пример 2. При каких b найдется а такое, что неравенство + b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а π /2 при а ≥0.

§ 6. Показательные уравнения и неравенства

1. Уравнение h ( x ) f ( x ) = h ( x ) g ( x ) при h ( x ) > 0 равносильно совокупности двух систем и

2. В частном случае ( h ( x )= a ) уравнение а f ( x ) = а g ( x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f ( x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f ( x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f ( a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f ( x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х = имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0 8 х >1 >1 >0, откуда a (1,5;4).

Ответ. a (1,5;4).

Решение. Рассмотрим три случая:

1. а . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых х R .

3. а > 0 . a 2 ∙2 x > a 2 x > x > — log 2 a

Ответ. х R при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g ( x ) ≤ log f ( x ) h ( x ) равносильно совокупности двух систем: и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение. Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

log х – 2 = 4 – log a x log х + log a x – 6 = 0, откуда log a x = — 3

х = а -3 и log a x = 2 х = а 2 . Условие х = а 4 а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а ( 0; 1) (1; ).

Пример 2. Найдите наибольшее значение а, при котором уравнение

2 log + a = 0 имеет решения.

Решение. Выполним замену = t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0 а.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log ( x 2 – 2 x + a ) > — 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ± и х 3,4 = 1 ±.

Критические значения параметра : а = 1 и а = 9.

Пусть Х1 и Х2 – множества решений первого и второго неравенств, тогда

Х 1 Х 2 = Х – решение исходного неравенства.

При 0 a 1 = (- ;1 — )( 1 + ; +), при а > 1 Х 1 = (-;+).

При 0 a 2 = (1 —; 1 +), при а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0 a ≤1 Х = (1 —;1 — )(1 + ;1 +).

3. a ≥ 9 Х – решений нет.

Высокий уровень С1, С2

Пример 1. Найдите все значения р, при которых уравнение

р ∙ ctg 2 x + 2 sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ ( — 1) + 2 sinx + p = 3, sinx = t , t , t 0.

p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f ( y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f ( x ) на . у / = 6 t – 6 t 2 , 6 t — 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t , E ( f ) = ,

При t , E ( f ) = , то есть при t , E ( f ) = .

Чтобы уравнение 3 t 2 – 2 t 3 = p ( следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E ( f ), то есть p .

Ответ. .

При каких значениях параметра а уравнение log (4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4 x 2 – 4 a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

4∙ 0 2 — 4 a + a 2 +7 = (0 2 + 2) 2 ,

1) a 1 = 1. Тогда уравнение имеет вид: log (4 x 2 +4) =2. Решаем его

4 x 2 + 4 = (х 2 + 2) 2 , 4 x 2 + 4 = х 4 + 4 x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log (4 x 2 +4) =2 х = 0 – единственный корень.

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – ( р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7рх 2 + 2х 2 – 14 рх — 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – ( р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = — 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2 р = — 1; если х 1 = х 2 = — 1, то р + 3 = — 1 – 1 = — 2 р = — 5. Проверим являются ли корни уравнения х 2 – ( р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = — 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ ( — 1) ∙ 1 – 3 ∙ 1 + 21 ∙ ( — 1) = 0 ≤ 0 – верно; для случая р = — 5, х1 = х2 = — 1 имеем ( — 1) 3 – 7 ∙ ( — 5) ∙ ( -1) 2 + 2 ∙ (-1) 2 – 14 ∙ ( -5) × ( — 1) – 3 ∙ ( — 1) + 21∙ ( -5 ) = — 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = — 1 и р = — 5.

Пример 4. Найдите все положительные значения параметра а, при которых число 1 принадлежит области определения функции

у = ( аа ).

Решение. у = ( аа ). Область определения данной функции составляют все значения х, для которых аа ≥ 0.

Если значения х = 1 принадлежит области определения, то должно выполняться неравенство а а ≥ 0, а а (1)

Таким образом, необходимо найти все а > 0, удовлетворяющие неравенству (1).

1) а = 1 удовлетворяет неравенству (1).

2) При а > 1 неравенство (1) равносильно неравенству 2 + 5аа 2 +6,

а 2 — 5а + 4 ≤ 0. Решение этого неравенства: 1≤ а ≤ 4. Учитывая условие а >1, получим 1

а 2 — 5а + 4 ≥ 0. Его решение а ≤ 1; а ≥ 4 с учетом условия 0


источники:

http://nsportal.ru/ap/library/drugoe/2014/06/28/tvorcheskiy-proekt-zadachi-s-parametrami

http://infourok.ru/uchebnoe_posobie_uravneniya_i_neravenstva_s_parametrami-415388.htm