Исследование уравнения состояния идеального газа

Урок-открытие с элементами исследования. Уравнение состояния идеального газа.

Разделы: Физика

Урок проводится в 10 классе, после изучения темы основное уравнение МКТ. (рассчитан на профильный уровень, слайд 0)

Цели урока:

  • Образовательные. Показать математическую зависимость между тремя макроскопическими параметрами p,V,T. Научить применять физические законы при решении задач. Научить применять полученные знания как язык науки, имеющий огромные возможности.
  • Воспитательные. Дать возможность почувствовать свой потенциал каждому учащемуся, чтобы показать значимость полученных знаний. Побудить к активной работе мысли. Развивать кругозор учащихся и патриотические чувства, гордости за свою страну, которая играла и играет в прогрессе человечества большую роль.
  • Развивающие. Формировать умение вести рассказ с помощью опорного конспекта, выражать свои мысли правильным «физическим» языком. Формировать умение выделять главное, обобщать и связывать имеющиеся знания со знаниями из других областей. Формировать умение наблюдать и анализировать явления, кратко и лаконично отвечать на вопросы.

Тип урока: изучение нового материала, с использованием элементов беседы.

Эпиграф к уроку:

«Посев научный взойдет для жатвы народной!»
(Дмитрий Иванович Менделеев) (слайд 1)

Демонстрации: зависимость между объемом, давлением и температурой.

Оборудование: мульдимедийный проектор, компьютер, экран, презентация PowerPoint.

Ход урока

I. Проверка домашнего задания. Повторение ранее изученного. (фронтальный опрос)

Учитель. Здравствуйте ребята. Добрый день. Выполним с вами экспериментальную задачу. Определим атмосферное давление в нашем кабинете. Оборудование: термометр, линейка (рассуждения учащихся).

Ученик. Термометром можно измерить температуру, линейкой измерить размеры комнаты и вычислить объем. А как установить зависимость между давлением, объемом и температурой?

Учитель. И это будет целью нашего урока, вывели физический закон, устанавливающий зависимость между тремя макроскопическими параметрами — p, V, T; научиться использовать закон при решении задач.

Учитель. Что такое идеальный газ? (слайд 2)

Ученик. Идеальным газом называется модель реального газа. Молекулярно-кинетическая теория рассматривает идеальный газ как множество частиц (молекул), расстояние между которыми намного превышает размеры самих частиц, находящихся в состоянии непрерывного хаотичного движения.

Учитель. Назовите условия, при которых газ можно считать идеальным?

Ученик. Газ, удовлетворяющий следующим условиям:

  • Межмолекулярные взаимодействия отсутствуют.
  • Взаимодействия молекул газа происходит только при соударениях, и являются упругими.
  • Молекулы газа не имеют объема – материальные точки.

Учитель. Что называется концентрацией?

Ученик. Концентрация – это число молекул в единице объема.

Учитель. Запишите и объясните физический смысл основного уравнения молекулярно-кинетической теории.

Ученик. Давление идеального газа обусловлено ударами молекул о стенку сосуда, поэтому с помощью молекулярно-кинетической теории его можно выразить через концентрацию молекул, средние скорости молекул и массу одной молекулы. p=⅓nmoυ2 — основное уравнение МКТ (уравнение Клаузиуса), устанавливает связь между микро- и макромиром. (слайд 3)

II. Постановка проблемного вопроса и решение его

Учитель. Какие параметры, характеризующие газ и процессы, проходящие в нем, называются микроскопическими параметрами (микропараметрами).

Ученик. Состояние идеального газа и процессы, проходящие в нем, будут определяться количеством частиц (молекул), из которых состоит газ, и их параметрами, такими как масса, диаметр, скорость, энергия и пр. (слайд 4) Такие параметры называются микроскопическими или микропараметрами.

Учитель. Какие параметры, характеризующие газ, и процессы, проходящие в нем, называются макроскопическими параметрами (макропараметрами)? (слайд 5)

Ученик. Параметры, характеризующие свойства газа как целого называются макроскопическими или макропараметрами.

Учитель. Если состояние газа не меняется, то не меняются и эти параметры. Назовите макропараметры, характеризующие газ?

Ученик. p – давление, V – объем, T – температура.

Учитель. Температуру, объем, давление и некоторые другие параметры принято называть параметрами состояния газа. Выведем уравнение, устанавливающее зависимость между этими параметрами. (слайд 6)

III. Изучение нового материала

1. Постоянная Лошмидта. Из основного уравнения МКТ идеального газа можно получить уравнение состояния идеального газа, связывающее между собой параметры состояния p, V и Т.

Если исключим из основного уравнения МКТ микроскопические параметры, заменяя их на макроскопические параметры используя известные соотношения , получаем:

p=nkT (1)

Это соотношение позволяет по двум известным макроскопическим параметрам (давлению и температуре газа) оценить микроскопический параметр (концентрацию).

Найдем концентрацию молекул любого идеального газа при нормальных условиях (н.у.):

Нормальные условия:
атмосферное давление p=1,013·10 5 Па,
температура 0°С, или Т=273,15К:
n=p/kT=1,01·10 5 /(1,38·10 -23 ·273)м -3 2,7·10 25 м -3 .

Это значение концентрации молекул идеального газа при нормальных условиях называется постоянной Лошмидта.

2. Уравнение Клапейрона.

Получим теперь с помощью равенства (1) новое уравнение. Если известно полное число частиц газа N, занимающего объем V, то число частиц в единице объема

С учетом этого выражение (1) приводится к виду

Так как Nk=const.

Для постоянной массы идеального газа отношение произведения давления на объем к данной температуре есть величина постоянная.

Выведенное нами уравнение связывает давление, объем и температуру, которые определяют состояние идеального газа, называется уравнением состояния идеального газа. – уравнение Клапейрона (слайд 7)

Историческая справка. (сообщение ученика, Приложение 1) В 1834 г. Французский физик Б. Клапейрон, работавший длительное время в России (Петербурге), вывел уравнение состояние идеального газа при постоянной массе газа (m=const).(слайд 8)

3. Уравнение Менделеева – Клапейрона.

Рассмотрим случай для произвольной массы газа

где NA = 6,02·10 23 моль -1 — число Авогадро,

k=1,38·10 -23 Дж/К — постоянная Больцмана

R=kNA = 8,31Дж/( моль·К) — универсальная газовая постоянная.

pV=m/M R T — уравнение Менделеева – Клапейрона- уравнение состояния идеального газа, связывающее три макроскопических параметра (давление, объем и температуру) газа данной массы. (слайд 9)

Историческая справка. (сообщение ученика, Приложение 2) Обобщив уравнение Клапейрона и введя понятие универсальной газовой постоянной, русский ученый Д. И. Менделеев в 1874 г.вывел общее уравнение для состояния идеального газа. (уравнение Менделеева – Клапейрона) (слайд 10)

С помощью данного уравнения можно описывать процессы сжатия и расширения, нагревания и охлаждения идеального газа.

IV.Закрепление изученного материала

1. Беседа с учащимися по вопросам. (слайд 11)

Учитель. Каковы нормальные условия для идеального газа?

Ученик. Нормальные условия для идеального газа: атмосферное давление p=1,013·10 5 Па, температура t=0°С, или Т=273,15К:

Учитель: Какова концентрация молекул идеального газа при нормальных условиях?

Ученик: n=p/kT=1,01·10 5 /(1,38·10 -23 ·273)м -3 ≈2,7·10 25 м -3 , это значение концентрации – число Лошмидта.

Учитель: Какие величины характеризуют состояние газа?

Ученик: Макропараметры p, V, T.

Учитель: Чем отличается уравнение состояния газа от уравнения Менделеева — Клапейрона? Какое из них полнее по содержанию? Почему?

Ученик: Уравнение состояния идеального газа для постоянной массы газа. Уравнение Менделеева – Клапейрона для переменной массы газа

Учитель. Чему равна универсальная газовая постоянная в СИ?

Ученик. R=NAk= 8,31Дж/ моль·К – универсальная газовая постоянная

2. Решение задач у доски с помощью учителя. (слайд 12)

Дополнительная задача. Для постоянной массы идеального газа отношение произведения давления на объем к данной температуре есть величина постоянная.

Вычислите отношение произведения давления на объем к данной температуре, если газ находиться при нормальных условиях

Полагая что моль газа находиться при нормальных условиях: атмосферное давление p0=1,013·10 5 Па, температура t= 0°С, или Т0=273,15К, молярный объем V0= 22,41·10 -3 м 3 /моль): Подставим и получим

R=8,31 Дж/(моль·К) –универсальная газовая постоянная.

V. Итоги урока

Ученик. Поставленной цели мы достигли: вывели физический закон, устанавливающий зависимость между тремя макроскопическими параметрами — p, V, T; и использовали его при решении задач.

Учитель. Уравнение состояния — первое из замечательных обобщений в физике, с помощью которых свойства разных веществ выражаются через одни и те же основные величины. Именно к этому стремиться физика — к нахождению общих законов, не зависящих от тех или иных веществ. Газы, существенно простые по своей природе, дали первый пример такого обобщения. (слайд 13)

А завершить урок хотелось словами Д.И. Менделеева, обращенными к нам, его потомкам: «Посев научный взойдет для жатвы народной!». И этот год юбилейный, 175-лет со дня рождения великого русского ученого-естествоиспытателя Д.И. Менделеева (слайд 14).

VI. Домашнее задание

§ 53, задачи 2, 5 к § 53.

Литература: Касьянов В. А.. Физика. 10 кл. Профильный уровень/ Из-во — Москва: Дрофа, 2007.

Презентация — Приложение 4, сообщение ученика о Клапейроне — Приложение 1, сообщение ученика о Менделееве — Приложение 2, задачи для закрепления пройденной темы — Приложение 3.

Физика. 10 класс

Идеальный газ

Уравнение состояния идеального газа. Газовые законы

Необходимо запомнить

$pV = \fracRT$ – уравнение Менделеева–Клапейрона.

Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: $p = p_1 + p_2 + . + p_i + . $ – закон Дальтона.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

$p_1V_1 = p_2V_2 = pV = const; T = const$

Для газа данной массы произведение давления на объём постоянна, если температура газа не меняется – закон Бойля–Мариотта.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Для газа данной массы отношение объёма к температуре постоянно, если давление не изменяется.

$V = const \cdot T$ – прямолинейная зависимость – закон Гей-Люссака.

Процесс изменения состояния термодинамической системы при постоянном объёме называют изохорным.

При данной массе газа отношение давление газа к температуре постоянно, если объём газа не изменяется – закон Шарля.

Лабораторная работа «Экспериментальная проверка закона Гей-Люссака»

Изучение взаимосвязи между объёмом газа и температурой

Многие учёные занимались изучением взаимосвязи между объёмом газа и температурой. Только Гей-Люссаку и независимо от него Дальтону удалось установить взаимосвязь. Однако Дальтон считал, что если температура возрастает в арифметической прогрессии, то объём газа возрастает в геометрической прогрессии. Французский физик Анри Реньо, произведя тщательные измерения, установил, что эти законы выполняются тем точнее, чем более разрежен газ и ввёл понятие идеального газа.

В 1787 году французский учёный Жак Шарль установил линейную зависимость давления от температуры, но не опубликовал исследование. Через 15 лет к таким же результатам пришёл и Гей-Люссак и, будучи на редкость благородным, настоял, чтобы закон назывался в честь Шарля.

В истории физики эти открытия были сделаны в обратном порядке: сначала экспериментально были получены газовые законы, и только потом они были обобщены в уравнение состояния. Этот путь занял почти 200 лет.

НАШИ ПАРТНЁРЫ

© Государственная образовательная платформа «Российская электронная школа»

Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения

Произведение числа Авогадро на постоянную Больцмана k называют универсальной газовой постоянной (R): R=k 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) k на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния () в состояние () (рис. 30.1).

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Разделив обе части первого уравнения на , а второго — на , получим: . Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды () давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния () в состояние (T), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство p. После сокращения на T получим: .

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: . Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния () в состояние (), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство . После сокращения на p получим:

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным p

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния () в состояние (), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство . После сокращения на V получим:

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно:

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза:

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Разделив уравнение (2) на уравнение (1) и учитывая, что получим: где Найдем значение искомой величины:

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): — универсальная газовая постоянная.
  3. Уравнение Клапейрона:
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://resh.edu.ru/subject/lesson/6292/main/

http://www.evkova.org/uravnenie-sostoyaniya-idealnogo-gaza